Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.107946
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pradeep Kundu & Seema Chopra & Bhupesh K. Lad, 2019. "Multiple failure behaviors identification and remaining useful life prediction of ball bearings," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1795-1807, April.
- Yu Mo & Qianhui Wu & Xiu Li & Biqing Huang, 2021. "Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1997-2006, October.
- da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Fan, Yuantao & Nowaczyk, Sławomir & Rögnvaldsson, Thorsteinn, 2020. "Transfer learning for remaining useful life prediction based on consensus self-organizing models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
- Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Wang, Jian & Liu, Huiyuan & Gao, Shibin & Yu, Long & Liu, Xingyang & Zhang, Dongkai & Kou, Lei, 2024. "Robust deep Gaussian process-based trustworthy fog-haze-caused pollution flashover prediction approach for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Li, Yuan & Li, Jingwei & Wang, Huanjie & Liu, Chengbao & Tan, Jie, 2024. "Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Zhuang, Jichao & Jia, Minping & Cao, Yudong & Zhao, Xiaoli, 2022. "Semi-supervised double attention guided assessment approach for remaining useful life of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Ding, Peng & Zhao, Xiaoli & Shao, Haidong & Jia, Minping, 2023. "Machinery cross domain degradation prognostics considering compound domain shifts," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life estimation of bearings under different working conditions via Wasserstein distance-based weighted domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Han Cheng & Xianguang Kong & Qibin Wang & Hongbo Ma & Shengkang Yang & Gaige Chen, 2023. "Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 587-613, February.
- Li, Yuan & Li, Jingwei & Wang, Huanjie & Liu, Chengbao & Tan, Jie, 2024. "Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Yu Mo & Liang Li & Biqing Huang & Xiu Li, 2023. "Few-shot RUL estimation based on model-agnostic meta-learning," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2359-2372, June.
- Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
More about this item
Keywords
Transfer learning; Cross-domain adaptation; Variable failure behaviors; Remaining useful life estimation; Temporal convolutional network; Rolling bearing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.