IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832018314327.html
   My bibliography  Save this article

A PSO approach for the integrated maintenance model

Author

Listed:
  • Lin, Danping
  • Jin, Baoping
  • Chang, Daofang

Abstract

To decrease the over-maintenance and under-maintenance phenomenon, this paper examined the relationship between facility reliability and lifespan so as to generate the optimal maintenance plan which includes the proper combination of maintenance time and maintenance modes. An age reduction maintenance model is built to describe the deterioration situation of the port facility, and a particle swarm optimization (PSO) based integrated approach is used to solve the model. The sensitivity analysis helps to determine the maintenance mode combination from which the total maintenance cost is minimized. The result shows that taking multiple maintenance modes into account would help optimize the total maintenance cost. In addition, the obvious difference between the reliability thresholds would assist in providing discrepant maintenance service. The results have indicated that when the thresholds of different maintenance mode are overlapped, the total maintenance cost is the highest.

Suggested Citation

  • Lin, Danping & Jin, Baoping & Chang, Daofang, 2020. "A PSO approach for the integrated maintenance model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832018314327
    DOI: 10.1016/j.ress.2019.106625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018314327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    2. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    3. Zhang, Yang & Andrews, John & Reed, Sean & Karlberg, Magnus, 2017. "Maintenance processes modelling and optimisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 150-160.
    4. Daniel Tonke & Martin Grunow, 2018. "Maintenance, shutdown and production scheduling in semiconductor robotic cells," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3306-3325, May.
    5. Roux, O. & Duvivier, D. & Quesnel, G. & Ramat, E., 2013. "Optimization of preventive maintenance through a combined maintenance-production simulation model," International Journal of Production Economics, Elsevier, vol. 143(1), pages 3-12.
    6. Bernd Heidergott & Taoying Farenhorst-Yuan, 2010. "Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy," Operations Research, INFORMS, vol. 58(3), pages 706-718, June.
    7. Gouiaa-Mtibaa, A. & Dellagi, S. & Achour, Z. & Erray, W., 2018. "Integrated Maintenance-Quality policy with rework process under improved imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 1-11.
    8. Cheng, Guo Qing & Zhou, Bing Hai & Li, Ling, 2018. "Integrated production, quality control and condition-based maintenance for imperfect production systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 251-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    3. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Zhang, Zihan & Yang, Li, 2020. "Postponed maintenance scheduling integrating state variation and environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boumallessa, Zeineb & Chouikhi, Houssam & Elleuch, Mounir & Bentaher, Hatem, 2023. "Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Gao, Kaiye & Peng, Rui & Qu, Li & Wu, Shaomin, 2020. "Jointly optimizing lot sizing and maintenance policy for a production system with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Rasay, Hasan & Taghipour, Sharareh & Sharifi, Mani, 2022. "An integrated Maintenance and Statistical Process Control Model for a Deteriorating Production Process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    6. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    8. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    9. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    10. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    11. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    12. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    13. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    17. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Love, Peter E.D. & Matthews, Jane, 2020. "Quality, requisite imagination and resilience: Managing risk and uncertainty in construction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832018314327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.