Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.107662
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
- Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
- Ramin Moghaddass & Ming Zuo, 2014. "Multistate degradation and supervised estimation methods for a condition-monitored device," IISE Transactions, Taylor & Francis Journals, vol. 46(2), pages 131-148.
- Paul Fearnhead & Peter Clifford, 2003. "On‐line inference for hidden Markov models via particle filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 887-899, November.
- Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
- Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.
- Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
- Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & Mc Donnell, D., 2017. "Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 25-40.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, EurÃpedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Zhao, Yixin & Cozzani, Valerio & Sun, Tianqi & Vatn, Jørn & Liu, Yiliu, 2023. "Condition-based maintenance for a multi-component system subject to heterogeneous failure dependences," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhao, Yunfei, 2022. "A Bayesian approach to comparing human reliability analysis methods using human performance data," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-GarcÃa, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Wang, Zeyu & Shafieezadeh, Abdollah & Xiao, Xiong & Wang, Xiaowei & Li, Quanwang, 2022. "Optimal monitoring location for tracking evolving risks to infrastructure systems: Theory and application to tunneling excavation risk," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Arnaud Dufays, 2016.
"Evolutionary Sequential Monte Carlo Samplers for Change-Point Models,"
Econometrics, MDPI, vol. 4(1), pages 1-33, March.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1518, CIRPEE.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1508, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
- Karppinen, Santeri & Rajala, Tuomas & Mäntyniemi, Samu & Kojola, Ilpo & Vihola, Matti, 2022. "Identifying territories using presence-only citizen science data: An application to the Finnish wolf population," Ecological Modelling, Elsevier, vol. 472(C).
- Naoki Awaya & Yasuhiro Omori, 2021. "Particle Rolling MCMC with Double-Block Sampling ," CIRJE F-Series CIRJE-F-1175, CIRJE, Faculty of Economics, University of Tokyo.
- Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011.
"state-observation sampling and the econometrics of learning models,"
HEC Research Papers Series
947, HEC Paris.
- Laurent-Emmanuel Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Working Papers hal-00625500, HAL.
- Laurent E. Calvet & Veronika Czellar, 2011. "State-Observation Sampling and the Econometrics of Learning Models," Papers 1105.4519, arXiv.org.
- Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
- Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
- Owen Jamie & Wilkinson Darren J. & Gillespie Colin S., 2015. "Likelihood free inference for Markov processes: a comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 189-209, April.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Cozzini, Alberto & Jasra, Ajay & Montana, Giovanni & Persing, Adam, 2014. "A Bayesian mixture of lasso regressions with t-errors," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 84-97.
- Lau, F. Din-Houn & Gandy, Axel, 2014. "RMCMC: A system for updating Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 99-110.
- Ramis Khabibullin & Sergei Seleznev, 2022.
"Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference,"
Papers
2210.07154, arXiv.org.
- Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Bank of Russia Working Paper Series wps104, Bank of Russia.
- Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
- Pierre Del Moral & Ajay Jasra & Yan Zhou, 2017. "Biased Online Parameter Inference for State-Space Models," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 727-749, September.
- Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
- Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
- Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
- Naoki Awaya & Yasuhiro Omori, 2019. "Particle rolling MCMC," CIRJE F-Series CIRJE-F-1110, CIRJE, Faculty of Economics, University of Tokyo.
More about this item
Keywords
Sequential Bayesian inference; Importance sampling; Forward–backward algorithm; Model parameter inference; Hidden Markov model; Multi-state system; Multi-source evidence; Information fusion; Nuclear power plant; Maintenance optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002039. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.