IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v239y2023ics095183202300412x.html
   My bibliography  Save this article

Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process

Author

Listed:
  • Gámiz, M.L.
  • Navas-Gómez, F.
  • Raya-Miranda, R.
  • Segovia-García, M.C.

Abstract

The main objective of this paper is to build stochastic models to describe the evolution-in-time of a system and to estimate its characteristics when direct observations of the system state are not available. One important application area arises with the deployment of sensor networks that have become ubiquitous nowadays with the purpose of observing and controlling industrial equipment. The model is based on hidden Markov processes where the observation at a given time depends not only on the current hidden state but also on the previous observations. Some reliability measures are defined in this context and a sensitivity analysis is presented in order to control for false positive (negative) signals that would lead to believe erroneously that the system is in failure (working) when actually it is not. System maintenance aspects based on the model are considered, and the concept of signal-runs is introduced. A simulation study is carried out to evaluate the finite sample performance of the method and a real application related to a water-pump system monitored by a set of sensors is also discussed.

Suggested Citation

  • Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:reensy:v:239:y:2023:i:c:s095183202300412x
    DOI: 10.1016/j.ress.2023.109498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300412X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    2. Guo, Chunhui & Liang, Zhenglin, 2022. "A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    4. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Duan, Chaoqun & Li, Yifan & Pu, Huayan & Luo, Jun, 2022. "Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
    9. Li, Ruopu & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Li, Chunhao & Li, Huanhuan & Xu, Beibei, 2020. "Dynamic maintenance planning of a hydro-turbine in operational life cycle," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Soleimani, Morteza & Campean, Felician & Neagu, Daniel, 2021. "Integration of Hidden Markov Modelling and Bayesian Network for fault detection and prediction of complex engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    12. Gámiz, María Luz & Limnios, Nikolaos & Segovia-García, María del Carmen, 2023. "Hidden markov models in reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1242-1255.
    13. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chunhui & Liang, Zhenglin, 2022. "A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    8. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    10. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    12. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    13. Arpad Gellert & Stefan-Alexandru Precup & Alexandru Matei & Bogdan-Constantin Pirvu & Constantin-Bala Zamfirescu, 2022. "Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    14. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Li, Yaping & Xia, Tangbin & Chen, Zhen & Pan, Ershun, 2023. "Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Li, Xilin & Teng, Wei & Peng, Dikang & Ma, Tao & Wu, Xin & Liu, Yibing, 2023. "Feature fusion model based health indicator construction and self-constraint state-space estimator for remaining useful life prediction of bearings in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:239:y:2023:i:c:s095183202300412x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.