IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v233y2023ics0951832023000224.html
   My bibliography  Save this article

Failure diagnosis of a compressor subjected to surge events: A data-driven framework

Author

Listed:
  • Leoni, Leonardo
  • De Carlo, Filippo
  • Abaei, Mohammad Mahdi
  • BahooToroody, Ahmad
  • Tucci, Mario

Abstract

Due to higher reliability and safety requirements, the importance of condition monitoring and failure diagnosis has progressively cleared up. In this context, being able to properly deal with noise and data reduction is fundamental for improving failure diagnosis and assuring safe operations. These tasks are particularly difficult in presence of many non-stationary and non-linear signals. Accordingly, this paper proposes a failure diagnosis methodology that integrates Empirical Mode Decomposition (EMD) and Neighborhood Component Analysis (NCA) for noise removal and data reduction. While noise detection and reduction techniques are established to reduce the uncertainties integrated with data acquisition, traditional approaches that cannot capture the non-stationary and non-linear nature of data might result in higher uncertainty. As a validated denoising method, EMD is applied to cope with the previous limitations. The NCA overcomes typical limitations such as imposing class distributions. After data pre-processing, the diagnosis is performed through a Random Forest. The methodology is tested on real data of a compressor subjected to surge, showing an accuracy higher than 97%. Moreover, the surge accuracy is close to 95%, while the regime accuracy is higher than 97%. The developed framework could assist practitioners in evaluating the condition of assets and, accordingly, planning maintenance.

Suggested Citation

  • Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000224
    DOI: 10.1016/j.ress.2023.109107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeed, Umer & Jan, Sana Ullah & Lee, Young-Doo & Koo, Insoo, 2021. "Fault diagnosis based on extremely randomized trees in wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Bae, Suk Joo & Mun, Byeong Min & Chang, Woojin & Vidakovic, Brani, 2019. "Condition monitoring of a steam turbine generator using wavelet spectrum based control chart," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 13-20.
    3. Erinc Karatoprak & Serhat Seker, 2019. "An Improved Empirical Mode Decomposition Method Using Variable Window Median Filter for Early Fault Detection in Electric Motors," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, February.
    4. Ahn, Hongshik & Moon, Hojin & Fazzari, Melissa J. & Lim, Noha & Chen, James J. & Kodell, Ralph L., 2007. "Classification by ensembles from random partitions of high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6166-6179, August.
    5. Wan, Shaoke & Li, Xiaohu & Zhang, Yanfei & Liu, Shijie & Hong, Jun & Wang, Dongfeng, 2022. "Bearing remaining useful life prediction with convolutional long short-term memory fusion networks," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    8. Hamzeh Soltanali & Abbas Rohani & Mohammad Hossein Abbaspour-Fard & Aditya Parida & José Torres Farinha, 2020. "Development of a risk-based maintenance decision making approach for automotive production line," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 236-251, February.
    9. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    10. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    13. Manjurul Islam, M.M. & Kim, Jong-Myon, 2019. "Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 55-66.
    14. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Xu, Fan & Yang, Fangfang & Fei, Zicheng & Huang, Zhelin & Tsui, Kwok-Leung, 2021. "Life prediction of lithium-ion batteries based on stacked denoising autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Chen, Zhiwei & Zhao, Yanlin & Yang, Jinling & Wang, Yao & Dui, Hongyan, 2024. "A novel degradation model and reliability evaluation methodology based on two-phase feature extraction: An application to marine lubricating oil pump," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    4. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    5. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    6. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Shu, Xing & Shen, Jiangwei & Chen, Zheng & Zhang, Yuanjian & Liu, Yonggang & Lin, Yan, 2022. "Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Zhou, Han & Yin, Hongpeng & Chai, Yi, 2023. "Multi-grained mode partition and robust fault diagnosis for multimode industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Xie, Lin & Ustolin, Federico & Lundteigen, Mary Ann & Li, Tian & Liu, Yiliu, 2022. "Performance analysis of safety barriers against cascading failures in a battery pack," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Meng, Fanbing & Yang, Fangfang & Yang, Jun & Xie, Min, 2023. "A power model considering initial battery state for remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.