Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2019.106549
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Noh, Yeelyong & Chang, Kwangpil & Seo, Yutaek & Chang, Daejun, 2014. "Risk-based determination of design pressure of LNG fuel storage tanks based on dynamic process simulation combined with Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 76-82.
- Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
- Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
- Spiessl, Sabine M. & Becker, Dirk-A., 2015. "Sensitivity analysis of a final repository model with quasi-discrete behaviour using quasi-random sampling and a metamodel approach in comparison to other variance-based techniques," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 287-296.
- Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
- Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
- Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
- Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2011. "Space-filling Latin hypercube designs for computer experiments," Other publications TiSEM 694f73df-a373-46a7-aa4d-1, Tilburg University, School of Economics and Management.
- Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
- Dimov, I. & Georgieva, R. & Ostromsky, Tz., 2012. "Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 23-28.
- Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
- Helton, Jon C. & Hansen, Clifford W. & Sallaberry, Cédric J., 2012. "Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 44-63.
- Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
- Elisabeth Paté‐Cornell, 2002. "Risk and Uncertainty Analysis in Government Safety Decisions," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 633-646, June.
- Jon C. Helton, 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 483-511, August.
- Cheung, Sai Hung & Oliver, Todd A. & Prudencio, Ernesto E. & Prudhomme, Serge & Moser, Robert D., 2011. "Bayesian uncertainty analysis with applications to turbulence modeling," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1137-1149.
- Annoni, Paola & Bruggemann, Rainer & Saltelli, Andrea, 2012. "Random and quasi-random designs in variance-based sensitivity analysis for partially ordered sets," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 184-189.
- Hansen, Clifford W. & Helton, Jon C. & Sallaberry, Cédric J., 2012. "Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 139-148.
- Heiko Apel & Annegret Thieken & Bruno Merz & Günter Blöschl, 2006. "A Probabilistic Modelling System for Assessing Flood Risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 79-100, May.
- Kimberly M. Thompson & David E. Burmaster & Edmund A.C. Crouch3, 1992. "Monte Carlo Techniques for Quantitative Uncertainty Analysis in Public Health Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(1), pages 53-63, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jung, Yongsu & Lee, Ikjin, 2021. "Optimal design of experiments for optimization-based model calibration using Fisher information matrix," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Krupenev, Dmitry & Boyarkin, Denis & Iakubovskii, Dmitrii, 2020. "Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Li, Yuntao & Wang, Yumeng & Lai, Yuying & Shuai, Jian & Zhang, Laibin, 2023. "Monte Carlo-based quantitative risk assessment of parking areas for vehicles carrying hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
- Yu, Ting & Lu, Zhenzhou & Yun, Wanying, 2023. "An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Zhao, Yunjie & Cheng, Xi & Zhang, Taihong & Wang, Lei & Shao, Wei & Wiart, Joe, 2023. "A global–local attention network for uncertainty analysis of ground penetrating radar modeling," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Chang, Qi & Zhou, Changcong & Wei, Pengfei & Zhang, Yishang & Yue, Zhufeng, 2021. "A new non-probabilistic time-dependent reliability model for mechanisms with interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Wang, Qipeng & Zhao, Liang, 2023. "Data-driven stochastic robust optimization of sustainable utility system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Likun Ren & Haiqin Qin & Na Cai & Bianjiang Li & Zhenbo Xie, 2022. "A Hybrid Degradation Evaluation Model for Aero-Engines," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Lu, Cheng & Teng, Da & Chen, Jun-Yu & Fei, Cheng-Wei & Keshtegar, Behrooz, 2023. "Adaptive vectorial surrogate modeling framework for multi-objective reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Liu, Xiaohang & Zheng, Shansuo & Wu, Xinxia & Chen, Dianxin & He, Jinchuan, 2021. "Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
- Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
- Kim, Taeyong & Song, Junho, 2018. "Generalized Reliability Importance Measure (GRIM) using Gaussian mixture," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 105-115.
- Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
- Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
- Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
- Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
- Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
- Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
- Kleijnen, Jack P.C., 2017.
"Regression and Kriging metamodels with their experimental designs in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Other publications TiSEM c592e895-1656-43c3-8c7e-f, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Discussion Paper 2015-035, Tilburg University, Center for Economic Research.
- Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
- Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
- Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
- Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
More about this item
Keywords
Quasi-Monte carlo; Uncertainty propagation; Building performance; Sampling efficiency; Error estimation; Sensitivity analysis; Sobol’ Indices; Kernel smoother;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018309189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.