IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004756.html
   My bibliography  Save this article

An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis

Author

Listed:
  • Shang, Xiaobing
  • Su, Li
  • Fang, Hai
  • Zeng, Bowen
  • Zhang, Zhi

Abstract

Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis.

Suggested Citation

  • Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004756
    DOI: 10.1016/j.ress.2022.108858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    2. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    3. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    5. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    6. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    7. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Chakraborty, Souvik & Chowdhury, Rajib, 2017. "A hybrid approach for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 50-57.
    9. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    10. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    11. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    12. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    13. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Goda, Takashi, 2021. "A simple algorithm for global sensitivity analysis with Shapley effects," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    17. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    18. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Xiaobing & Wang, Lipeng & Fang, Hai & Lu, Lingyun & Zhang, Zhi, 2024. "Active Learning of Ensemble Polynomial Chaos Expansion Method for Global Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Ding, Jiayi & Zhou, Jianfang & Cai, Wei, 2023. "An efficient variable selection-based Kriging model method for the reliability analysis of slopes with spatially variable soils," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Lu, Ning & Li, Yan-Feng & Mi, Jinhua & Huang, Hong-Zhong, 2024. "AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Zhao, Zhao & Lu, Zhao-Hui & Zhao, Yan-Gang, 2024. "A novel single-loop estimation method for predictive failure probability-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Maroli, John M., 2023. "Generating discrete dynamical system equations from input–output data using neural network identification models," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zha, Congyi & Pan, Chenrong & Sun, Zhili & Liu, Qin, 2024. "A single-loop reliability sensitivity analysis strategy for time-dependent rare events with both random variables and stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    3. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    4. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    5. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    6. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Zdeněk Kala, 2024. "Global Sensitivity Analysis of Structural Reliability Using Cliff Delta," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
    8. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    10. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Zhao, Zhao & Lu, Zhao-Hui & Zhao, Yan-Gang, 2024. "A novel single-loop estimation method for predictive failure probability-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    13. Ballester-Ripoll, Rafael & Paredes, Enrique G. & Pajarola, Renato, 2019. "Sobol tensor trains for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 311-322.
    14. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    15. Zhang, Xiaodong & Dimitrov, Nikolay, 2024. "Variable importance analysis of wind turbine extreme responses with Shapley value explanation," Renewable Energy, Elsevier, vol. 232(C).
    16. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    17. Shang, Xiaobing & Wang, Lipeng & Fang, Hai & Lu, Lingyun & Zhang, Zhi, 2024. "Active Learning of Ensemble Polynomial Chaos Expansion Method for Global Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    19. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    20. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.