IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v187y2019icp174-182.html
   My bibliography  Save this article

An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy

Author

Listed:
  • Yun, Wanying
  • Lu, Zhenzhou
  • Jiang, Xian

Abstract

Probability density function (PDF)-based and failure probability (FP)-based moment-independent global sensitivity indices can commendably reflect the influence of model input on the whole distribution and partial distribution (or called FP) of model output respectively, yet how to efficiently and accurately estimate these two indices for guiding the engineering practice still remains an essential and challenging problem. In this paper, a novel PDF estimation based method is proposed, which equivalently transforms the computation of these two indices into that of the unconditional and conditional fractional moments of model output. To estimate them, an efficient and simple way is introduced based on a multiplicative version of the dimensional reduction method. The proposed method remarkably reduces the computational cost and can obtain these two indices simultaneously by reusing the information in the integration grid. Results of three case studies demonstrate the effectiveness of the proposed method and its good engineering application.

Suggested Citation

  • Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
  • Handle: RePEc:eee:reensy:v:187:y:2019:i:c:p:174-182
    DOI: 10.1016/j.ress.2018.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017307007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Leigang & Lu, Zhenzhou & Cheng, Lei & Fan, Chongqing, 2014. "A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 163-175.
    2. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    3. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    4. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    5. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    6. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    7. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.
    8. Kucherenko, S. & Delpuech, B. & Iooss, B. & Tarantola, S., 2015. "Application of the control variate technique to estimation of total sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 251-259.
    9. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Zhu, Xianming & Lu, Zhenzhou & Yun, Wanying, 2020. "An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Deng, Jian, 2022. "Probabilistic characterization of soil properties based on the maximum entropy method from fractional moments: Model development, case study, and application," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Peng, Yongbo & Ma, Yangying & Huang, Tianchen & De Domenico, Dario, 2021. "Reliability-based design optimization of adaptive sliding base isolation system for improving seismic performance of structures," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Nogal, M. & Nogal, A., 2021. "Sensitivity method for extreme-based engineering problems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    2. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    3. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    4. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    5. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    7. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    8. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Zdeněk Kala, 2024. "Global Sensitivity Analysis of Structural Reliability Using Cliff Delta," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
    10. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    11. Wei, Pengfei & Song, Jingwen & Lu, Zhenzhou & Yue, Zhufeng, 2016. "Time-dependent reliability sensitivity analysis of motion mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 107-120.
    12. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    13. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    14. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    15. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    16. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    17. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    18. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    19. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.
    20. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:187:y:2019:i:c:p:174-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.