IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v107y2012icp184-189.html
   My bibliography  Save this article

Random and quasi-random designs in variance-based sensitivity analysis for partially ordered sets

Author

Listed:
  • Annoni, Paola
  • Bruggemann, Rainer
  • Saltelli, Andrea

Abstract

A special application of global sensitivity analysis is that on partially ordered sets – posets – that are sets of objects endowed by a binary order relation. In a partial order two objects can be in relation with each other, and are said to be comparable, or not, then they are said to be incomparable. Comparability and incomparability relations between objects can be visualized in a so called Hasse diagram, which is instructive in ranking the objects by multi-criteria/non-compensatory approaches. The interpretation of a Hasse diagram may be difficult even when the number of objects in the set is relatively small. Completely different configurations of the diagram can arise even for small perturbations of the starting data. Global sensitivity indices can shed light on the robustness of the partial order to data value uncertainty. Global measures particularly fit the case since posets are characterized by high number of dimensions and high-order interactions. These distinctive features of sensitivity analysis for posets make quasi-random designs perform almost the same as the random one as it is discussed here with a real test case for comparing the level of competitiveness of EU countries.

Suggested Citation

  • Annoni, Paola & Bruggemann, Rainer & Saltelli, Andrea, 2012. "Random and quasi-random designs in variance-based sensitivity analysis for partially ordered sets," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 184-189.
  • Handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:184-189
    DOI: 10.1016/j.ress.2012.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    2. Sobol´ I.M. & Kucherenko S.S., 2005. "On global sensitivity analysis of quasi-Monte Carlo algorithms," Monte Carlo Methods and Applications, De Gruyter, vol. 11(1), pages 83-92, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    2. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    3. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    5. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    6. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    7. Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
    8. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    10. Jiacheng Liu & Haiyun Liu & Cong Zhang & Jiyin Cao & Aibo Xu & Jiwei Hu, 2024. "Derivative-Variance Hybrid Global Sensitivity Measure with Optimal Sampling Method Selection," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    11. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    12. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    13. Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
    14. Awad, Majdi & Senga Kiesse, Tristan & Assaghir, Zainab & Ventura, Anne, 2019. "Convergence of sensitivity analysis methods for evaluating combined influences of model inputs," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 109-122.
    15. Nikishova, Anna & Comi, Giovanni E. & Hoekstra, Alfons G., 2020. "Sensitivity analysis based dimension reduction of multiscale models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 205-220.
    16. Céline Diebold, 2022. "How Meaningful is the Elite Quality Index Ranking?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(1), pages 137-170, August.
    17. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    18. Ge, Qiao & Ciuffo, Biagio & Menendez, Monica, 2015. "Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 334-344.
    19. Ye, Dongwei & Nikishova, Anna & Veen, Lourens & Zun, Pavel & Hoekstra, Alfons G., 2021. "Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:184-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.