IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v134y2015icp287-296.html
   My bibliography  Save this article

Sensitivity analysis of a final repository model with quasi-discrete behaviour using quasi-random sampling and a metamodel approach in comparison to other variance-based techniques

Author

Listed:
  • Spiessl, Sabine M.
  • Becker, Dirk-A.

Abstract

This paper contributes to the investigation of recent computationally efficient variance-based methods for sensitivity analysis and sampling schemes on the basis of a Performance Assessment (PA) model for a repository for Low- and Intermediate-Level Radioactive Waste (LILW) in an abandonned salt mine. The PA model takes account of typical characteristics of repository systems including a quasi-discrete nature.

Suggested Citation

  • Spiessl, Sabine M. & Becker, Dirk-A., 2015. "Sensitivity analysis of a final repository model with quasi-discrete behaviour using quasi-random sampling and a metamodel approach in comparison to other variance-based techniques," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 287-296.
  • Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:287-296
    DOI: 10.1016/j.ress.2014.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolado-Lavin, R. & Castaings, W. & Tarantola, S., 2009. "Contribution to the sample mean plot for graphical and numerical sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1041-1049.
    2. Plischke, Elmar, 2010. "An effective algorithm for computing global sensitivity indices (EASI)," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 354-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Spiessl, Sabine M. & Kucherenko, Sergei & Becker, Dirk-A. & Zaccheus, Oluyemi, 2019. "Higher-order sensitivity analysis of a final repository model with discontinuous behaviour using the RS-HDMR meta-modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 149-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    2. Plischke, Elmar, 2012. "An adaptive correlation ratio method using the cumulative sum of the reordered output," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 149-156.
    3. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    4. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    5. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    6. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    7. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    8. Tarantola, S. & Kopustinskas, V. & Bolado-Lavin, R. & Kaliatka, A. & Ušpuras, E. & Vaišnoras, M., 2012. "Sensitivity analysis using contribution to sample variance plot: Application to a water hammer model," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 62-73.
    9. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    10. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Tissot, Jean-Yves & Prieur, Clémentine, 2012. "Bias correction for the estimation of sensitivity indices based on random balance designs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 205-213.
    13. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    14. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    15. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    16. Goda, Takashi, 2021. "A simple algorithm for global sensitivity analysis with Shapley effects," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Girard, Sylvain & Romary, Thomas & Favennec, Jean-Melaine & Stabat, Pascal & Wackernagel, Hans, 2013. "Sensitivity analysis and dimension reduction of a steam generator model for clogging diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 143-153.
    18. Spiessl, Sabine M. & Kucherenko, Sergei & Becker, Dirk-A. & Zaccheus, Oluyemi, 2019. "Higher-order sensitivity analysis of a final repository model with discontinuous behaviour using the RS-HDMR meta-modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 149-158.
    19. Dawei Zhang & Weilin Li & Xiaohua Wu & Tie Liu, 2018. "An Efficient Regional Sensitivity Analysis Method Based on Failure Probability with Hybrid Uncertainty," Energies, MDPI, vol. 11(7), pages 1-19, June.
    20. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Uncertainty Importance Analysis Using Parametric Moment Ratio Functions," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 223-234, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:287-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.