IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v62y2013i4p551-572.html
   My bibliography  Save this article

Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis

Author

Listed:
  • David Lunn
  • Jessica Barrett
  • Michael Sweeting
  • Simon Thompson

Abstract

No abstract is available for this item.

Suggested Citation

  • David Lunn & Jessica Barrett & Michael Sweeting & Simon Thompson, 2013. "Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 551-572, August.
  • Handle: RePEc:bla:jorssc:v:62:y:2013:i:4:p:551-572
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.12007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. Lu, Guobing & Ades, A.E., 2006. "Assessing Evidence Inconsistency in Mixed Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 447-459, June.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    6. A. E. Ades & A. J. Sutton, 2006. "Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 5-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Lysy & Natesh S. Pillai & David B. Hill & M. Gregory Forest & John W. R. Mellnik & Paula A. Vasquez & Scott A. McKinley, 2016. "Model Comparison and Assessment for Single Particle Tracking in Biological Fluids," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1413-1426, October.
    2. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Nilakshi T. Waidyatillake & Patricia T. Campbell & Don Vicendese & Shyamali C. Dharmage & Ariadna Curto & Mark Stevenson, 2021. "Particulate Matter and Premature Mortality: A Bayesian Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    4. Ahmed Merie & Myron Hlynka, 2019. "Medical Intervention for Disease Stages Using Game Theory, Markov Chains, and Bayesian Inference," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(4), pages 60-67, July.
    5. repec:ibn:ijspnl:v:8:y:2019:i:4:p:60 is not listed on IDEAS
    6. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    7. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    8. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Goubar & A. E. Ades & D. De Angelis & C. A. McGarrigle & C. H. Mercer & P. A. Tookey & K. Fenton & O. N. Gill, 2008. "Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 541-580, June.
    2. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    3. Howard Thom & Frank Ender & Saisudha Samavedam & Caridad Perez Vivez & Subhajit Gupta & Mukesh Dhariwal & Jan de Haan & Derek O’Boyle, 2019. "Effect of AcrySof versus other intraocular lens properties on the risk of Nd:YAG capsulotomy after cataract surgery: A systematic literature review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    4. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2020. "Dynamic effects of monetary policy shocks on macroeconomic volatility," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 262-282.
    6. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    7. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    8. Patricia Guyot & Anthony E. Ades & Matthew Beasley & Béranger Lueza & Jean-Pierre Pignon & Nicky J. Welton, 2017. "Extrapolation of Survival Curves from Cancer Trials Using External Information," Medical Decision Making, , vol. 37(4), pages 353-366, May.
    9. Peixia Cheng & Liheng Tan & Peishan Ning & Li Li & Yuyan Gao & Yue Wu & David C. Schwebel & Haitao Chu & Huaiqiong Yin & Guoqing Hu, 2018. "Comparative Effectiveness of Published Interventions for Elderly Fall Prevention: A Systematic Review and Network Meta-Analysis," IJERPH, MDPI, vol. 15(3), pages 1-14, March.
    10. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    11. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
    12. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    13. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    14. Hall, Jamie, 2012. "Consumption dynamics in general equilibrium," MPRA Paper 43933, University Library of Munich, Germany.
    15. Loukia M. Spineli, 2022. "A Revised Framework to Evaluate the Consistency Assumption Globally in a Network of Interventions," Medical Decision Making, , vol. 42(5), pages 637-648, July.
    16. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    17. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    18. Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.
    19. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    20. A. M. Presanis & D. De Angelis & D. J. Spiegelhalter & S. Seaman & A. Goubar & A. E. Ades, 2008. "Conflicting evidence in a Bayesian synthesis of surveillance data to estimate human immunodeficiency virus prevalence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 915-937, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:62:y:2013:i:4:p:551-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.