IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v105y2012icp73-79.html
   My bibliography  Save this article

A time-discrete extended gamma process for time-dependent degradation phenomena

Author

Listed:
  • Guida, M.
  • Postiglione, F.
  • Pulcini, G.

Abstract

The non-stationary Gamma process is a widely used mathematical model to describe degradation phenomena whose growth rate at time t depends only on the current age of the item and not on the accumulated damage up to t. Nevertheless, the Gamma process is not a proper choice when there is empirical evidence that the variance-to-mean ratio of the process varies with time, because the Gamma process implies a constant variance-to-mean ratio. This paper proposes a generalization of the non-stationary Gamma process, which can be viewed as a time discretization of the extended Gamma process and allows one to describe time-dependent degradation phenomena whose variance varies with time t, not necessarily in proportion to the mean. A way to approximate the exact distribution of the degradation growth over a given time interval is given and a test for assessing whether the assumption of the Gamma process can be rejected or not is discussed. Finally, the proposed model is applied to a real dataset consisting of the sliding wear data of four metal alloy specimens.

Suggested Citation

  • Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
  • Handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:73-79
    DOI: 10.1016/j.ress.2011.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolai, Robin P. & Dekker, Rommert & van Noortwijk, Jan M., 2007. "A comparison of models for measurable deterioration: An application to coatings on steel structures," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1635-1650.
    2. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    3. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.
    3. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Guida, Maurizio & Postiglione, Fabio & Pulcini, Gianpaolo, 2015. "A random-effects model for long-term degradation analysis of solid oxide fuel cells," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 88-98.
    5. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Sophie Mercier & Carmen Sangüesa, 2023. "A general multivariate lifetime model with a multivariate additive process as conditional hazard rate increment process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 91-129, January.
    7. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    9. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    10. Zeina Al Masry & Sophie Mercier & Ghislain Verdier, 2017. "Approximate Simulation Techniques and Distribution of an Extended Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 213-235, March.
    11. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    12. Ayman Hijazy & András Zempléni, 2021. "Gamma Process-Based Models for Disease Progression," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 241-255, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    2. Nicolai, R.P. & Frenk, J.B.G. & Dekker, R., 2007. "Modelling and Optimizing Imperfect Maintenance of Coatings on Steel Structures," ERIM Report Series Research in Management ERS-2007-043-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    4. Finkelstein, Maxim & Ludick, Zani, 2014. "On some steady-state characteristics of systems with gradual repair," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 17-23.
    5. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    6. C Meier-Hirmer & G Riboulet & F Sourget & M Roussignol, 2009. "Maintenance optimization for a system with a gamma deterioration process and intervention delay: Application to track maintenance," Journal of Risk and Reliability, , vol. 223(3), pages 189-198, September.
    7. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    8. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    9. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    10. Boutros El Hajj & Bruno Castanier & Franck Schoefs & Thomas Yeung, 2016. "A risk-oriented degradation model for maintenance of reinforced concrete structure subjected to cracking," Journal of Risk and Reliability, , vol. 230(5), pages 521-530, October.
    11. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    12. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.
    13. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    15. Kuniewski, Sebastian P. & van der Weide, Johannes A.M. & van Noortwijk, Jan M., 2009. "Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1480-1490.
    16. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Yin Shu & Qianmei Feng & David W. Coit, 2015. "Life distribution analysis based on Lévy subordinators for degradation with random jumps," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 483-492, September.
    18. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    19. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    20. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:73-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.