IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002691.html
   My bibliography  Save this article

Multifractional and long-range dependent characteristics for remaining useful life prediction of cracking gas compressor

Author

Listed:
  • Song, Wanqing
  • Duan, Shouwu
  • Zio, Enrico
  • Kudreyko, Aleksey

Abstract

Cracking gas compressor (CGC) is a complex equipment used in ethylene production facilities. For the reliable and safe operation of CGC, the prediction of its remaining useful life (RUL) of relevance. The degradation process of a CGC from a normal state to a failure state has long-range dependence (LRD) with nonlinear and multifractal features. Concurrently, the increment of the degradation process obeys a non-Gaussian distribution. In this study, a degradation model for RUL prediction of CGC is developed. The model is based on a nonlinear drift function and Linear Multifractional Levy Stable Motion (LMSM). The drift function describes the nonlinear characteristics of the degradation process, whereas the LMSM allows accounting for its LRD, multifractal and non-Gaussian characteristics. The LRD features reflect the slowness of the degradation process, the multifractional features allow capturing local irregularities due to degenerate data fluctuations, and can specifically describe degenerate sequences. Finally, a RUL prediction framework for CGC is proposed and, then, verified with real observation data collected from an operating CGC.

Suggested Citation

  • Song, Wanqing & Duan, Shouwu & Zio, Enrico & Kudreyko, Aleksey, 2022. "Multifractional and long-range dependent characteristics for remaining useful life prediction of cracking gas compressor," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002691
    DOI: 10.1016/j.ress.2022.108630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    2. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    3. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Wu, Bei & Cui, Lirong & Fang, Chen, 2019. "Reliability analysis of semi-Markov systems with restriction on transition times," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    5. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Li, Fen & Lu, Zhenzhou & Feng, Kaixuan, 2021. "Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Lin, Chun Pang & Ling, Man Ho & Cabrera, Javier & Yang, Fangfang & Yu, Denis Yau Wai & Tsui, Kwok Leung, 2021. "Prognostics for lithium-ion batteries using a two-phase gamma degradation process model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Wang, Jingjing & Miao, Yonghao, 2021. "Optimal preventive maintenance policy of the balanced system under the semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    13. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Li, Yang & Xu, Jun, 2024. "Neural network-aided simulation of non-Gaussian stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Jiang, Yuchen & Luo, Hao & Yin, Shen, 2023. "A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Xiang, Sheng & Qin, Yi & Liu, Fuqiang & Gryllias, Konstantinos, 2022. "Automatic multi-differential deep learning and its application to machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Ding, Wanmeng & Li, Jimeng & Mao, Weilin & Meng, Zong & Shen, Zhongjie, 2023. "Rolling bearing remaining useful life prediction based on dilated causal convolutional DenseNet and an exponential model," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Asgari, Ali & Si, Wujun & Yuan, Liang & Krishnan, Krishna & Wei, Wei, 2024. "Multivariable degradation modeling and life prediction using multivariate fractional Brownian motion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    13. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    14. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    16. Ladislav Kristoufek & Paulo Ferreira, 2018. "Capital asset pricing model in Portugal: Evidence from fractal regressions," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 17(3), pages 173-183, November.
    17. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    19. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    20. Lin Lin & Jie Liu & Feng Guo & Changsheng Tong & Lizheng Zu & Hao Guo, 2022. "ERDERP: Entity and Relation Double Embedding on Relation Hyperplanes and Relation Projection Hyperplanes," Mathematics, MDPI, vol. 10(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.