IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v145y2016icp9-18.html
   My bibliography  Save this article

A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis

Author

Listed:
  • Di Maio, Francesco
  • Rai, Ajit
  • Zio, Enrico

Abstract

The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Coverage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the time required for it to reach these percentiles values during its dynamic evolution.

Suggested Citation

  • Di Maio, Francesco & Rai, Ajit & Zio, Enrico, 2016. "A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 9-18.
  • Handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:9-18
    DOI: 10.1016/j.ress.2015.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015002586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Garrett & George Apostolakis, 1999. "Context in the Risk Assessment of Digital Systems," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 23-32, February.
    2. Marseguerra, M. & Zio, E. & Devooght, J. & Labeau, P.E., 1998. "A concept paper on dynamic reliability via Monte Carlo simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(2), pages 371-382.
    3. Zio, Enrico & Di Maio, Francesco & Tong, Jiejuan, 2010. "Safety margins confidence estimation for a passive residual heat removal system," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 828-836.
    4. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    2. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    3. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S. & Sanchez-Saez, F. & Saiz, M., 2018. "Evaluation of risk impact of completion time changes combining PSA and DSA model insight and human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 97-107.
    4. Karanki, D.R. & Dang, V.N. & MacMillan, M.T. & Podofillini, L., 2018. "A comparison of dynamic event tree methods – Case study on a chemical batch reactor," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 542-553.
    5. Kang, Dong Gu, 2020. "Comparison of statistical methods and deterministic sensitivity studies for investigation on the influence of uncertainty parameters: Application to LBLOCA," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    8. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    9. Francesco, Di Maio & Matteo, Fumagalli & Carlo, Guerini & Federico, Perotti & Enrico, Zio, 2021. "Time-dependent reliability analysis of the reactor building of a nuclear power plant for accounting of its aging and degradation," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Santhosh, T.V. & Gopika, V. & Ghosh, A.K. & Fernandes, B.G., 2018. "An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 31-44.
    11. Di Maio, Francesco & Picoco, Claudia & Zio, Enrico & Rychkov, Valentin, 2017. "Safety margin sensitivity analysis for model selection in nuclear power plant probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 122-138.
    12. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    14. Dimaio, F. & Scapinello, O. & Zio, E. & Ciarapica, C. & Cincotta, S. & Crivellari, A. & Decarli, L. & Larosa, L., 2021. "Accounting for Safety Barriers Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    2. Francesco Di Maio & Samuele Baronchelli & Enrico Zio, 2015. "A Computational Framework for Prime Implicants Identification in Noncoherent Dynamic Systems," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 142-156, January.
    3. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    4. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    5. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    6. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    7. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    8. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    9. Iaccarino, Gianluca & Sharp, David & Glimm, James, 2013. "Quantification of margins and uncertainties using multiple gates and conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 99-113.
    10. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    12. Matteo Vagnoli & Francesco Di Maio & Enrico Zio, 2018. "Ensembles of climate change models for risk assessment of nuclear power plants," Journal of Risk and Reliability, , vol. 232(2), pages 185-200, April.
    13. Bishop, Peter & Bloomfield, Robin & Littlewood, Bev & Popov, Peter & Povyakalo, Andrey & Strigini, Lorenzo, 2014. "A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 61-68.
    14. Daniele Codetta-Raiteri & Luigi Portinale, 2014. "Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 228(5), pages 488-503, October.
    15. Pietro Turati & Nicola Pedroni & Enrico Zio, 2017. "An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 147-159, January.
    16. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    17. Mandelli, D. & Parisi, C. & Alfonsi, A. & Maljovec, D. & Boring, R. & Ewing, S. & St Germain, S. & Smith, C. & Rabiti, C. & Rasmussen, M., 2019. "Multi-unit dynamic PRA," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 303-317.
    18. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    19. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    20. Zhang, Huilong & Innal, Fares & Dufour, François & Dutuit, Yves, 2014. "Piecewise Deterministic Markov Processes based approach applied to an offshore oil production system," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 126-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.