IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v159y2017icp69-79.html
   My bibliography  Save this article

A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel

Author

Listed:
  • Certa, Antonella
  • Hopps, Fabrizio
  • Inghilleri, Roberta
  • La Fata, Concetta Manuela

Abstract

Failure Mode and Effects Analysis (FMEA) is a safety and reliability analysis tool widely used for the identification of system/process potential failures, their causes and consequences. When aimed at the failure modes prioritization, FMEA is named Failure Mode, Effects and Criticality Analysis (FMECA). In the latter case, failure modes are commonly prioritized by means of the Risk Priority Number (RPN) that has been widely criticized to have several shortcomings. Firstly, in the presence of multiple experts supplying different and uncertain judgments on risk parameters, RPN is not able to deal with such a kind of information. Therefore, the present paper proposes the Dempster-Shafer Theory (DST) of evidence as a proper mathematical framework to deal with the epistemic uncertainty often affecting the input evaluations on risk parameters. In particular, such evaluations are supposed to be elicited from experts in an interval or crisp form, and then opportunely propagated to obtain a multiple-values characterization of the RPN associated with each analyzed failure mode. In order to synthesize the available information and make them useful for failure mode's prioritization aims, Belief and Plausibility distributions are used. The methodology is finally applied to the propulsion system of a fishing vessel operating in Sicily.

Suggested Citation

  • Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
  • Handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:69-79
    DOI: 10.1016/j.ress.2016.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016307141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    2. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    3. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    4. Seyed-Hosseini, S.M. & Safaei, N. & Asgharpour, M.J., 2006. "Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 872-881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Xinhu & Lam, Jasmine Siu Lee, 2019. "A fast reaction-based port vulnerability assessment: Case of Tianjin Port explosion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 11-33.
    2. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    3. Jianghong Zhu & Bin Shuai & Rui Wang & Kwai-Sang Chin, 2019. "Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method," Mathematics, MDPI, vol. 7(6), pages 1-17, June.
    4. Aijun Liu & Taoning Liu & Xiaohui Ji & Hui Lu & Feng Li, 2019. "The Evaluation Method of Low-Carbon Scenic Spots by Combining IBWM with B-DST and VIKOR in Fuzzy Environment," IJERPH, MDPI, vol. 17(1), pages 1-30, December.
    5. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    6. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    7. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.
    8. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    9. Zhang, Hengjie & Dong, Yucheng & Xiao, Jing & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.
    11. Yifan Chen & Genbao Zhang & Yan Ran, 2019. "Risk Analysis of Coupling Fault Propagation Based on Meta-Action for Computerized Numerical Control (CNC) Machine Tool," Complexity, Hindawi, vol. 2019, pages 1-11, July.
    12. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    13. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Heng Zhang & Yaya Chen & Jingyu Cong & Junxiao Liu & Zhifu Zhang & Xirui Zhang, 2023. "Reliability Study of an Intelligent Profiling Progressive Automatic Glue Cutter Based on the Improved FMECA Method," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    15. Cunlong Fan & Jakub Montewka & Di Zhang, 2021. "Towards a Framework of Operational-Risk Assessment for a Maritime Autonomous Surface Ship," Energies, MDPI, vol. 14(13), pages 1-12, June.
    16. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kuen-Chang & Tsai, Wen-Hsien & Yang, Chih-Hao & Lin, Ya-Zhi, 2018. "An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 76-85.
    2. Bhatta, Arun & Bigsby, Hugh R. & Cullen, Ross, 2011. "Alternative to Comprehensive Ecosystem Services Markets: The Contribution of Forest-Related Programs in New Zealand," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115350, New Zealand Agricultural and Resource Economics Society.
    3. Daniel Schatz & Rabih Bashroush, 0. "Economic valuation for information security investment: a systematic literature review," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    4. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    5. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    6. Bertomeu, M. & Romero, C., 2001. "Managing forest biodiversity: a zero-one goal programming approach," Agricultural Systems, Elsevier, vol. 68(3), pages 197-213, June.
    7. Ormerod, R.J., 2014. "Critical rationalism in practice: Strategies to manage subjectivity in OR investigations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 784-797.
    8. Sunita Guru & Jitendra Nenavani & Vipul Patel & Nityesh Bhatt, 2020. "Ranking of perceived risks in online shopping," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(2), pages 137-152, June.
    9. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    10. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    11. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Hartvigsen, David, 2005. "Representing the strengths and directions of pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 163(2), pages 357-369, June.
    13. Min Li & Tsung-Chih Hsiao & Chih-Cheng Chen, 2020. "Exploring the Factors of Cooperation between Artists and Technologists in Creating New Media Art Works: Based on AHP," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    14. Eliküçük, Seval & Polat, Zeynel Abidin, 2021. "Identifying key factors affecting foreigners' choice on real estate acquisition: The case of İzmir City, Turkey," Land Use Policy, Elsevier, vol. 107(C).
    15. X Li & P Beullens & D Jones & M Tamiz, 2009. "An integrated queuing and multi-objective bed allocation model with application to a hospital in China," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 330-338, March.
    16. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.
    17. Yung-Chi Shen, 2017. "Identifying the key barriers and their interrelationships impeding the university technology transfer in Taiwan: a multi-stakeholder perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2865-2884, November.
    18. Hyungjun Seo & Seunghwan Myeong, 2020. "The Priority of Factors of Building Government as a Platform with Analytic Hierarchy Process Analysis," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    19. Stokes, Jeffrey R. & Tozer, Peter R., 2002. "Sire selection with multiple objectives," Agricultural Systems, Elsevier, vol. 73(2), pages 147-164, August.
    20. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:159:y:2017:i:c:p:69-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.