IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003501.html
   My bibliography  Save this article

Logical differential calculus for calculation of Birnbaum importance of non-coherent system

Author

Listed:
  • Zaitseva, Elena
  • Levashenko, Vitaly
  • Sedlacek, Peter
  • Kvassay, Miroslav
  • Rabcan, Jan

Abstract

The Birnbaum importance is one of the measures often used in importance analysis. Many algorithms for the calculation of this measure have been proposed for coherent systems. Several interpretations of the Birnbaum importance for non-coherent systems also exist. These interpretations are usually based on the prime implicants of the structure function of the system. However, identification of the prime implicants is a complex problem. In this paper, we develop a method for computation of Birnbaum importance using Boolean expression (algebraic representation) and truth table (matrix representation). Both of these representations are calculated based on Logical Differential Calculus, in particular, Boolean derivatives. The Boolean expression derived based on Boolean derivatives is equal to known definitions of the Birnbaum importance. The matrix approach for the calculation of the Birnbaum importance based on Boolean derivatives is novel. This approach can be used for calculation of the Birnbaum importance for the structure function represented by truth table and does not need transformation of the structure function into Boolean expression. An important advantage of the proposed approach (in algebraic or matrix form) is a possibility to define the Birnbaum importance for the evaluation of the non-coherent system failure (restore) with respect to simultaneous changes of states of several system components.

Suggested Citation

  • Zaitseva, Elena & Levashenko, Vitaly & Sedlacek, Peter & Kvassay, Miroslav & Rabcan, Jan, 2021. "Logical differential calculus for calculation of Birnbaum importance of non-coherent system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003501
    DOI: 10.1016/j.ress.2021.107829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Garrett & George Apostolakis, 1999. "Context in the Risk Assessment of Digital Systems," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 23-32, February.
    2. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    3. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    4. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.
    5. Vaurio, Jussi K., 2011. "Importance measures in risk-informed decision making: Ranking, optimisation and configuration control," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1426-1436.
    6. Schneeweiss, Winfrid G., 2009. "A short Boolean derivation of mean failure frequency for any (also non-coherent) system," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1363-1367.
    7. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedlacek, Peter & Zaitseva, Elena & Levashenko, Vitaly & Kvassay, Miroslav, 2021. "Critical state of non-coherent multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    3. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.
    5. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    7. Sudhanshu Aggarwal, 2021. "Minimal path set importance in complex systems," Journal of Risk and Reliability, , vol. 235(2), pages 201-208, April.
    8. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    9. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    10. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Rusnak, Patrik & Zaitseva, Elena & Levashenko, Vitaly & Bolvashenkov, Igor & Kammermann, Jörg, 2024. "Importance analysis of a system based on survival signature by structural importance measures," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2021. "Application of logic regression to assess the importance of interactions between components in a network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    14. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    15. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    16. Fu, Yuqiang & Yuan, Tao & Zhu, Xiaoyan, 2019. "Importance-measure based methods for component reassignment problem of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    17. Bishop, Peter & Bloomfield, Robin & Littlewood, Bev & Popov, Peter & Povyakalo, Andrey & Strigini, Lorenzo, 2014. "A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 61-68.
    18. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Kawahara, Jun & Sonoda, Koki & Inoue, Takeru & Kasahara, Shoji, 2019. "Efficient construction of binary decision diagrams for network reliability with imperfect vertices," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 142-154.
    20. Nicolae Brînzei & Jean-François Aubry, 2018. "Graphs models and algorithms for reliability assessment of coherent and non-coherent systems," Journal of Risk and Reliability, , vol. 232(2), pages 201-215, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.