IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v182y2019icp13-32.html
   My bibliography  Save this article

Quantitative risk reduction by means of recovery strategies

Author

Listed:
  • París, C.
  • Queral, C.
  • Mula, J.
  • Gómez-Magán, J.
  • Sánchez-Perea, M.
  • Meléndez, E.
  • Gil, J.

Abstract

After the accident at Fukushima Dai-ichi, considerable efforts were put on enhancing the capability of the Nuclear Power Plants to cope with conditions resulting from the loss of plant safety-related systems. The most widespread solution adopted worldwide has been to define and implement new procedures and emergency actuation plans, the so called FLEX strategies. Among these strategies, there are several recovery strategies which involve the use of portable equipment for accomplishing the safety functions of the unavailable systems. In some cases, these strategies have been devised to be performed concurrently to the usual system recovery procedures included in the EOPs of most NPPs. In this regard, the heat sink recovery after the occurrence of a Total Loss of Feedwater (TLFW) in a Westinghouse 3-loop PWR design is a significant example, and it has been chosen in the present study to assess the quantitative risk reduction provided by the usual and FLEX recovery strategies in a Westinghouse 3-loop PWR design. With this aim, the Integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to TLFW sequences as part of the collaboration between Technical University of Madrid (UPM), NFQ Solutions and CSN.

Suggested Citation

  • París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
  • Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:13-32
    DOI: 10.1016/j.ress.2018.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017311742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Queral, C. & Gómez-Magán, J. & París, C. & Rivas-Lewicky, J. & Sánchez-Perea, M. & Gil, J. & Mula, J. & Meléndez, E. & Hortal, J. & Izquierdo, J.M. & Fernández, I., 2018. "Dynamic event trees without success criteria for full spectrum LOCA sequences applying the integrated safety assessment (ISA) methodology," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 152-168.
    2. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    3. Catalyurek, Umit & Rutt, Benjamin & Metzroth, Kyle & Hakobyan, Aram & Aldemir, Tunc & Denning, Richard & Dunagan, Sean & Kunsman, David, 2010. "Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 278-294.
    4. Karanki, Durga Rao & Dang, Vinh N., 2016. "Quantification of Dynamic Event Trees – A comparison with event trees for MLOCA scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 19-31.
    5. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    6. Sherry, Richard R. & Gabor, Jeffery R. & Hess, Stephen M., 2013. "Pilot application of risk informed safety margin characterization to a total loss of feedwater event," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 65-72.
    7. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    8. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    9. Rebollo, M.J. & Queral, C. & Jimenez, G. & Gomez-Magan, J. & Meléndez, E. & Sanchez-Perea, M., 2016. "Evaluation of the offsite dose contribution to the global risk in a Steam Generator Tube Rupture scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 32-48.
    10. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    11. Di Maio, Francesco & Rai, Ajit & Zio, Enrico, 2016. "A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 9-18.
    12. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    13. Ibánez, L. & Hortal, J. & Queral, C. & Gómez-Magán, J. & Sánchez-Perea, M. & Fernández, I. & Meléndez, E. & Expósito, A. & Izquierdo, J.M. & Gil, J. & Marrao, H. & Villalba-Jabonero, E., 2016. "Application of the Integrated Safety Assessment methodology to safety margins. Dynamic Event Trees, Damage Domains and Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 170-193.
    14. Di Maio, Francesco & Picoco, Claudia & Zio, Enrico & Rychkov, Valentin, 2017. "Safety margin sensitivity analysis for model selection in nuclear power plant probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 122-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.
    3. Karanki, D.R. & Dang, V.N. & MacMillan, M.T. & Podofillini, L., 2018. "A comparison of dynamic event tree methods – Case study on a chemical batch reactor," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 542-553.
    4. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud & van Gelder, Pieter, 2020. "BN-SLIM: A Bayesian Network methodology for human reliability assessment based on Success Likelihood Index Method (SLIM)," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    7. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    8. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    10. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    12. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    14. Parhizkar, Tarannom & Utne, Ingrid Bouwer & Vinnem, Jan Erik & Mosleh, Ali, 2021. "Supervised dynamic probabilistic risk assessment of complex systems, part 2: Application to risk-informed decision making, practice and results," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    15. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    16. Hogenboom, Sandra & Parhizkar, Tarannom & Vinnem, Jan Erik, 2021. "Temporal decision-making factors in risk analyses of dynamic positioning operations," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Groth, Katrina M. & Mosleh, Ali, 2012. "A data-informed PIF hierarchy for model-based Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 154-174.
    18. Ekanem, Nsimah J. & Mosleh, Ali & Shen, Song-Hua, 2016. "Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 301-315.
    19. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    20. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:13-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.