IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i9p1034-1052.html
   My bibliography  Save this article

Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty

Author

Listed:
  • Helton, Jon C.
  • Johnson, Jay D.

Abstract

In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. A previous presentation, “Quantification of Margins and Uncertainties: Conceptual and Computational Basis,†describes the basic ideas that underlie QMU and illustrates these ideas with two notional examples that employ probability for the representation of aleatory and epistemic uncertainty. The current presentation introduces and illustrates the use of interval analysis, possibility theory and evidence theory as alternatives to the use of probability theory for the representation of epistemic uncertainty in QMU-type analyses. The following topics are considered: the mathematical structure of alternative representations of uncertainty, alternative representations of epistemic uncertainty in QMU analyses involving only epistemic uncertainty, and alternative representations of epistemic uncertainty in QMU analyses involving a separation of aleatory and epistemic uncertainty. Analyses involving interval analysis, possibility theory and evidence theory are illustrated with the same two notional examples used in the presentation indicated above to illustrate the use of probability to represent aleatory and epistemic uncertainty in QMU analyses.

Suggested Citation

  • Helton, Jon C. & Johnson, Jay D., 2011. "Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1034-1052.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1034-1052
    DOI: 10.1016/j.ress.2011.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011000585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    2. Dubois, Didier & Prade, Henri, 1989. "Fuzzy sets, probability and measurement," European Journal of Operational Research, Elsevier, vol. 40(2), pages 135-154, May.
    3. Kohlas, Jurg, 1989. "Modeling uncertainty with belief functions in numerical models," European Journal of Operational Research, Elsevier, vol. 40(3), pages 377-388, June.
    4. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L. & Sallaberry, C.J., 2006. "Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1414-1434.
    5. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    6. Baudrit, C. & Dubois, D., 2006. "Practical representations of incomplete probabilistic knowledge," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 86-108, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    2. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    3. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    5. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    6. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    7. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    8. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A Critical Discussion and Practical Recommendations on Some Issues Relevant to the Nonprobabilistic Treatment of Uncertainty in Engineering Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1315-1340, July.
    10. Yao, Wen & Chen, Xiaoqian & Huang, Yiyong & van Tooren, Michel, 2013. "An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 28-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    2. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2022. "Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    6. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    7. Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
    8. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    9. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    10. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    11. Iaccarino, Gianluca & Sharp, David & Glimm, James, 2013. "Quantification of margins and uncertainties using multiple gates and conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 99-113.
    12. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    13. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    14. Smimou, K. & Bector, C.R. & Jacoby, G., 2008. "Portfolio selection subject to experts' judgments," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1036-1054, December.
    15. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    16. Ripamonti, G. & Lonati, G. & Baraldi, P. & Cadini, F. & Zio, E., 2013. "Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 98-105.
    17. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    18. David Curto & Fernando Acebes & Jose M Gonzalez-Varona & David Poza, 2024. "Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves," Papers 2406.03500, arXiv.org.
    19. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Jeremy Rohmer & Eric Chojnacki, 2021. "Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model," Environment Systems and Decisions, Springer, vol. 41(1), pages 131-146, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1034-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.