IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021004579.html
   My bibliography  Save this article

Accounting for Safety Barriers Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks

Author

Listed:
  • DIMAIO, F.
  • SCAPINELLO, O.
  • ZIO, E.
  • CIARAPICA, C.
  • CINCOTTA, S.
  • CRIVELLARI, A.
  • DECARLI, L.
  • LAROSA, L.

Abstract

In this paper, a multistate Bayesian Network (BN) is proposed to model and evaluate the functional performance of safety barriers in Oil and Gas plants. The nodes of the BN represent the safety barriers Health States (HSs) and the corresponding conditional Failure Probability (FP) values are assigned. HSs are assessed on the basis of specific Key Performance Indicators (KPIs) related to the barrier characteristics (i.e., technical, procedural or organizational, continuously monitored or event-based characterized). FP values are estimated from failure datasets (for technical barriers), evaluated by Human Reliability Analysis (HRA) (for operational and organizational barriers) and assigned by expert elicitation (for barriers lacking data or information). For illustration, the multistate BN model is developed for preventive barriers and applied to a case study related to the potential release of flammable material in the slug catcher of a representative O&G Upstream plant which may lead to major accident scenarios (fire, explosion, toxic dispersion). The results from the case study demonstrate that the multistate BN model is able to account for the safety barriers HS and their associated functional performance.

Suggested Citation

  • Dimaio, F. & Scapinello, O. & Zio, E. & Ciarapica, C. & Cincotta, S. & Crivellari, A. & Decarli, L. & Larosa, L., 2021. "Accounting for Safety Barriers Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004579
    DOI: 10.1016/j.ress.2021.107943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Di Maio, Francesco & Rai, Ajit & Zio, Enrico, 2016. "A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 9-18.
    3. Robert Goble & Vicki M. Bier, 2013. "Risk Assessment Can Be a Game‐Changing Information Technology—But Too Often It Isn't," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1942-1951, November.
    4. Zio, Enrico & Di Maio, Francesco & Tong, Jiejuan, 2010. "Safety margins confidence estimation for a passive residual heat removal system," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 828-836.
    5. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    6. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2017. "Portfolio optimization of safety measures for reducing risks in nuclear systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 20-29.
    8. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    10. Nima Khakzad, 2018. "Which Fire to Extinguish First? A Risk‐Informed Approach to Emergency Response in Oil Terminals," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1444-1454, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Deng, Wanyi & Ma, Xiaoxue & Qiao, Weiliang, 2024. "A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Valcamonico, Dario & Baraldi, Piero & Zio, Enrico & Decarli, Luca & Crivellari, Anna & Rosa, Laura La, 2024. "Combining natural language processing and bayesian networks for the probabilistic estimation of the severity of process safety events in hydrocarbon production assets," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    3. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    4. Tuqiang Zhou & Junyi Zhang & Dashzeveg Baasansuren, 2018. "A Hybrid HFACS-BN Model for Analysis of Mongolian Aviation Professionals’ Awareness of Human Factors Related to Aviation Safety," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
    5. Pandya, Dhruv & Podofillini, Luca & Emert, Frank & Lomax, Antony J. & Dang, Vinh N. & Sansavini, Giovanni, 2020. "Quantification of a human reliability analysis method for radiotherapy applications based on expert judgment aggregation," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    6. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    8. Di Maio, Francesco & Picoco, Claudia & Zio, Enrico & Rychkov, Valentin, 2017. "Safety margin sensitivity analysis for model selection in nuclear power plant probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 122-138.
    9. Justin Pence & Zahra Mohaghegh, 2020. "A Discourse on the Incorporation of Organizational Factors into Probabilistic Risk Assessment: Key Questions and Categorical Review," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1183-1211, June.
    10. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    12. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S. & Sanchez-Saez, F. & Saiz, M., 2018. "Evaluation of risk impact of completion time changes combining PSA and DSA model insight and human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 97-107.
    14. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2016. "Methods for building Conditional Probability Tables of Bayesian Belief Networks from limited judgment: An evaluation for Human Reliability Application," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 93-112.
    15. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    16. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    17. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    18. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    19. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    20. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.