IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v138y2015icp59-72.html
   My bibliography  Save this article

Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions

Author

Listed:
  • Shah, Harsheel
  • Hosder, Serhat
  • Winter, Tyler

Abstract

The objective of this paper is to implement Dempster–Shafer Theory of Evidence (DSTE) in the presence of mixed (aleatory and multiple sources of epistemic) uncertainty to the reliability and performance assessment of complex engineering systems through the use of quantification of margins and uncertainties (QMU) methodology. This study focuses on quantifying the simulation uncertainties, both in the design condition and the performance boundaries along with the determination of margins. To address the possibility of multiple sources and intervals for epistemic uncertainty characterization, DSTE is used for uncertainty quantification. An approach to incorporate aleatory uncertainty in Dempster–Shafer structures is presented by discretizing the aleatory variable distributions into sets of intervals. In view of excessive computational costs for large scale applications and repetitive simulations needed for DSTE analysis, a stochastic response surface based on point-collocation non-intrusive polynomial chaos (NIPC) has been implemented as the surrogate for the model response. The technique is demonstrated on a model problem with non-linear analytical functions representing the outputs and performance boundaries of two coupled systems. Finally, the QMU approach is demonstrated on a multi-disciplinary analysis of a high speed civil transport (HSCT).

Suggested Citation

  • Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
  • Handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:59-72
    DOI: 10.1016/j.ress.2015.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pilch, Martin & Trucano, Timothy G. & Helton, Jon C., 2011. "Ideas underlying the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 965-975.
    2. Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
    3. Sentz, Kari & Ferson, Scott, 2011. "Probabilistic bounding analysis in the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1126-1136.
    4. Wallstrom, Timothy C., 2011. "Quantification of margins and uncertainties: A probabilistic framework," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1053-1062.
    5. Urbina, Angel & Mahadevan, Sankaran & Paez, Thomas L., 2011. "Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1114-1125.
    6. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    2. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    3. Cai, Yu & Zhao, Wei & Wang, Xiaoping & Ou, Yanjun & Chen, Yangyang & Li, Xueyan, 2024. "A novel multiple linearization method for reliability analysis based on evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    5. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Hund, Lauren & Schroeder, Benjamin, 2020. "A causal perspective on reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    5. Iaccarino, Gianluca & Sharp, David & Glimm, James, 2013. "Quantification of margins and uncertainties using multiple gates and conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 99-113.
    6. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    7. Di Maio, Francesco & Bandini, Alessandro & Zio, Enrico & Alberola, Sofia Carlos & Sanchez-Saez, Francisco & Martorell, Sebastián, 2016. "Bootstrapped-ensemble-based Sensitivity Analysis of a trace thermal-hydraulic model based on a limited number of PWR large break loca simulations," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 122-134.
    8. Riley, Matthew E., 2015. "Evidence-based quantification of uncertainties induced via simulation-based modeling," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 79-86.
    9. Strigini, Lorenzo & Wright, David, 2014. "Bounds on survival probability given mean probability of failure per demand; and the paradoxical advantages of uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 66-83.
    10. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    11. Teferra, Kirubel & Shields, Michael D. & Hapij, Adam & Daddazio, Raymond P., 2014. "Mapping model validation metrics to subject matter expert scores for model adequacy assessment," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 9-19.
    12. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    14. Certa, Antonella & Hopps, Fabrizio & Inghilleri, Roberta & La Fata, Concetta Manuela, 2017. "A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 69-79.
    15. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    17. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    18. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    19. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.