IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i1p18-36.html
   My bibliography  Save this article

Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time

Author

Listed:
  • Vishal Pradhan
  • Ajay Kumar
  • Joydip Dhar

Abstract

The fault reduction factor (FRF) is a significant parameter for controlling the software reliability growth. It is the ratio of net fault correction to the number of failures encountered. In literature, many factors affect the behaviour of FRF, namely fault dependency, debugging time-lag, human learning behaviour and imperfect debugging. Besides this, several distributions, for example, inflection S-shaped, Weibull and Exponentiated-Weibull, are used as FRF. However, these standard distributions are not flexible to describe the observed behaviour of FRFs. This paper proposes three different software reliability growth models (SRGMs), which incorporate a three-parameter generalized inflection S-shaped (GISS) distribution as FRF. To model realistic SRGMs, time lags between fault detection and fault correction processes are also incorporated. This study proposed two models for the single release, whereas the third model is designed for multi-release software. Moreover, the first model is in perfect debugging, while the rest of the two are in an imperfect debugging environment. The extensive experiments are conducted for the proposed models with six single release and one multi-release data-sets. The choice of GISS distribution as an FRF improves the software reliability evaluation in comparison with the existing systems in the literature. Finally, the development cost and optimal release time are calculated in a perfect debugging environment.

Suggested Citation

  • Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:18-36
    DOI: 10.1177/1748006X211033713
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211033713
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211033713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Subhashis Chatterjee & Ankur Shukla & Hoang Pham, 2019. "Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point," Journal of Risk and Reliability, , vol. 233(2), pages 246-256, April.
    2. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    3. Qiuying Li & Hoang Pham, 2017. "A testing-coverage software reliability model considering fault removal efficiency and error generation," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    4. Subhashis Chatterjee & Ankur Shukla, 2017. "An Ideal Software Release Policy for an Improved Software Reliability Growth Model Incorporating Imperfect Debugging with Fault Removal Efficiency and Change Point," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-21, June.
    5. Madhu Jain & T. Manjula & T.R. Gulati, 2014. "Imperfect debugging study of SRGM with fault reduction factor and multiple change point," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 6(2), pages 155-175.
    6. Anu Gupta Aggarwal & Neha Gandhi & Vibha Verma & Abhishek Tandon, 2019. "Multi-release software reliability growth assessment: an approach incorporating fault reduction factor and imperfect debugging," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 15(4), pages 446-463.
    7. Jiajun Xu & Shuzhen Yao, 2016. "Software Reliability Growth Model with Partial Differential Equation for Various Debugging Processes," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
    2. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    3. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    4. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    5. Tabassum Naz Sindhu & Sadia Anwar & Marwa K. H. Hassan & Showkat Ahmad Lone & Tahani A. Abushal & Anum Shafiq, 2023. "An Analysis of the New Reliability Model Based on Bathtub-Shaped Failure Rate Distribution with Application to Failure Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    6. Ranjan Kumar & Subhash Kumar & Sanjay K. Tiwari, 2019. "A study of software reliability on big data open source software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 242-250, April.
    7. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    8. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    9. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    10. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    11. Subhashis Chatterjee & Ankur Shukla & Hoang Pham, 2019. "Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point," Journal of Risk and Reliability, , vol. 233(2), pages 246-256, April.
    12. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    13. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    14. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
    15. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    16. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    17. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    18. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    19. Vibha Verma & Abhishek Tandon & Anu G. Aggarwal, 2022. "The Moderating Effect of Management Review in Enhancing Software Reliability: A Partial Least Square Approach," Information Systems Frontiers, Springer, vol. 24(6), pages 1845-1863, December.
    20. Mohammad Ubaidullah Bokhari & Md. Ashraf Siddiqui & Afaq Ahmad, 2021. "Integration of Testing Effort Function into Delayed S-Shaped Software Reliability Growth Model with Imperfect Debugging — a Proposed Bokhari Model," SN Operations Research Forum, Springer, vol. 2(4), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:18-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.