IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v2y2021i4d10.1007_s43069-021-00105-9.html
   My bibliography  Save this article

Integration of Testing Effort Function into Delayed S-Shaped Software Reliability Growth Model with Imperfect Debugging — a Proposed Bokhari Model

Author

Listed:
  • Mohammad Ubaidullah Bokhari

    (Aligarh Muslim University)

  • Md. Ashraf Siddiqui

    (Aligarh Muslim University)

  • Afaq Ahmad

    (Sultan Qaboos University)

Abstract

Assurance of software reliability is an important factor in software applications, and the process of software testing has become one of the essential requirements in software development. Many software reliability growth models have been developed based on non-homogeneous Poisson process, which incorporates logistic testing effort function. The paper proposed and developed a delayed S-shaped software reliability growth model with imperfect debugging, which integrates the Burr Type XII testing effort function. The testing effort function parameters are estimated by least square estimation method and S-shaped software reliability growth model parameters by maximum likelihood estimation. Various software reliability growth models are investigated through three data sets under perfect debugging and one data set under imperfect debugging. It is found that the proposed delayed S-shaped software reliability growth model with imperfect debugging has a better error prediction capability.

Suggested Citation

  • Mohammad Ubaidullah Bokhari & Md. Ashraf Siddiqui & Afaq Ahmad, 2021. "Integration of Testing Effort Function into Delayed S-Shaped Software Reliability Growth Model with Imperfect Debugging — a Proposed Bokhari Model," SN Operations Research Forum, Springer, vol. 2(4), pages 1-23, December.
  • Handle: RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00105-9
    DOI: 10.1007/s43069-021-00105-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-021-00105-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-021-00105-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamada, Shigeru & Ohtera, Hiroshi, 1990. "Software reliability growth models for testing-effort control," European Journal of Operational Research, Elsevier, vol. 46(3), pages 343-349, June.
    2. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    3. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    2. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    3. Babu Zachariah, 2015. "Optimal stopping time in software testing based on failure size approach," Annals of Operations Research, Springer, vol. 235(1), pages 771-784, December.
    4. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    5. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    6. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    7. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    8. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
    9. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    10. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    11. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    12. Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
    13. Aktekin, Tevfik & Caglar, Toros, 2013. "Imperfect debugging in software reliability: A Bayesian approach," European Journal of Operational Research, Elsevier, vol. 227(1), pages 112-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00105-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.