IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i9p1628-1637.html
   My bibliography  Save this article

A risk-reduction approach for optimal software release time determination with the delay incurred cost

Author

Listed:
  • Rui Peng
  • Yan-Fu Li
  • Jun-Guang Zhang
  • Xiang Li

Abstract

Most existing research on software release time determination assumes that parameters of the software reliability model (SRM) are deterministic and the reliability estimate is accurate. In practice, however, there exists a risk that the reliability requirement cannot be guaranteed due to the parameter uncertainties in the SRM, and such risk can be as high as 50% when the mean value is used. It is necessary for the software project managers to reduce the risk to a lower level by delaying the software release, which inevitably increases the software testing costs. In order to incorporate the managers’ preferences over these two factors, a decision model based on multi-attribute utility theory (MAUT) is developed for the determination of optimal risk-reduction release time.

Suggested Citation

  • Rui Peng & Yan-Fu Li & Jun-Guang Zhang & Xiang Li, 2015. "A risk-reduction approach for optimal software release time determination with the delay incurred cost," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1628-1637, July.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:9:p:1628-1637
    DOI: 10.1080/00207721.2013.827261
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.827261
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.827261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    2. Brito, A.J. & de Almeida, A.T., 2009. "Multi-attribute risk assessment for risk ranking of natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 187-198.
    3. Boland, Philip J. & Ní Chuív, Nóra, 2007. "Optimal times for software release when repair is imperfect," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1176-1184, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    2. Marlow, David R. & Beale, David J. & Mashford, John S., 2012. "Risk-based prioritization and its application to inspection of valves in the water sector," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 67-74.
    3. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    4. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    7. Andrés Christen, J. & Ruggeri, Fabrizio & Villa, Enrique, 2011. "Utility based maintenance analysis using a Random Sign censoring model," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 425-431.
    8. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Aorui Bi & Shuya Huang & Xinguo Sun, 2023. "Risk Assessment of Oil and Gas Pipeline Based on Vague Set-Weighted Set Pair Analysis Method," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    10. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    11. Brito, Anderson J. & de Almeida, Adiel T., 2012. "Modeling a multi-attribute utility newsvendor with partial backlogging," European Journal of Operational Research, Elsevier, vol. 220(3), pages 820-830.
    12. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Zhen-Song Chen & Min Li & Wen-Tao Kong & Kwai-Sang Chin, 2019. "Evaluation and Selection of HazMat Transportation Alternatives: A PHFLTS- and TOPSIS-Integrated Multi-Perspective Approach," IJERPH, MDPI, vol. 16(21), pages 1-33, October.
    14. Mohsin, R. & Majid, Z.A. & Yusof, M.Z., 2014. "Safety distance between underground natural gas and water pipeline facilities," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 53-60.
    15. Xufeng Zhao & Toshio Nakagawa, 2015. "Optimal periodic and random inspections with first, last and overtime policies," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1648-1660, July.
    16. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    17. de Gusmão, Ana Paula Henriques & e Silva, Lúcio Camara & Silva, Maisa Mendonça & Poleto, Thiago & Costa, Ana Paula Cabral Seixas, 2016. "Information security risk analysis model using fuzzy decision theory," International Journal of Information Management, Elsevier, vol. 36(1), pages 25-34.
    18. Fang, Jianguang & Gao, Yunkai & Sun, Guangyong & Xu, Chengmin & Li, Qing, 2015. "Multiobjective robust design optimization of fatigue life for a truck cab," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 1-8.
    19. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    20. Sinisterra, Wilfrido Quiñones & Cavalcante, Cristiano Alexandre Virgínio, 2020. "An integrated model of production scheduling and inspection planning for resumable jobs," International Journal of Production Economics, Elsevier, vol. 227(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:9:p:1628-1637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.