Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mohammad Ubaidullah Bokhari & Md. Ashraf Siddiqui & Afaq Ahmad, 2021. "Integration of Testing Effort Function into Delayed S-Shaped Software Reliability Growth Model with Imperfect Debugging — a Proposed Bokhari Model," SN Operations Research Forum, Springer, vol. 2(4), pages 1-23, December.
- Aktekin, Tevfik & Caglar, Toros, 2013. "Imperfect debugging in software reliability: A Bayesian approach," European Journal of Operational Research, Elsevier, vol. 227(1), pages 112-121.
- Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
- Lujia Wang & Qingpei Hu & Jian Liu, 2016. "Software reliability growth modeling and analysis with dual fault detection and correction processes," IISE Transactions, Taylor & Francis Journals, vol. 48(4), pages 359-370, April.
- Pham, Hoang & Zhang, Xuemei, 2003. "NHPP software reliability and cost models with testing coverage," European Journal of Operational Research, Elsevier, vol. 145(2), pages 443-454, March.
- Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
- Chih-Chiang Fang & Chun-Wu Yeh, 2016. "Effective confidence interval estimation of fault-detection process of software reliability growth models," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2878-2892, September.
- Zhao, Xingyu & Littlewood, Bev & Povyakalo, Andrey & Strigini, Lorenzo & Wright, David, 2018. "Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 265-282.
- H. R. Marasi & M. Sedighi & H. Aydi & Y. U. Gaba & Ram Jiwari, 2021. "A Reliable Treatment for Nonlinear Differential Equations," Journal of Mathematics, Hindawi, vol. 2021, pages 1-5, December.
- Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
- Norah N. Al-Mutairi & Lutfiah I. Al-Turk & Sharifah A. Al-Rajhi, 2020. "A New Reliability Model Based on Lindley Distribution with Application to Failure Data," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, November.
- Chiu, Kuei-Chen & Huang, Yeu-Shiang & Lee, Tzai-Zang, 2008. "A study of software reliability growth from the perspective of learning effects," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1410-1421.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gabriela Czibula & Mihaiela Lupea & Anamaria Briciu, 2022. "Enhancing the Performance of Software Authorship Attribution Using an Ensemble of Deep Autoencoders," Mathematics, MDPI, vol. 10(15), pages 1-27, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
- Chih-Chiang Fang & Chun-Wu Yeh, 2016. "Effective confidence interval estimation of fault-detection process of software reliability growth models," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2878-2892, September.
- Tabassum Naz Sindhu & Sadia Anwar & Marwa K. H. Hassan & Showkat Ahmad Lone & Tahani A. Abushal & Anum Shafiq, 2023. "An Analysis of the New Reliability Model Based on Bathtub-Shaped Failure Rate Distribution with Application to Failure Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
- Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
- Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
- Landon, Joshua & Özekici, Süleyman & Soyer, Refik, 2013. "A Markov modulated Poisson model for software reliability," European Journal of Operational Research, Elsevier, vol. 229(2), pages 404-410.
- Umashankar Samal & Ajay Kumar, 2024. "A software reliability model incorporating fault removal efficiency and it’s release policy," Computational Statistics, Springer, vol. 39(6), pages 3137-3155, September.
- Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
- Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
- Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
- Jørgen Vitting Andersen & Roy Cerqueti & Giulia Rotundo, 2017.
"Rational expectations and stochastic systems,"
Documents de travail du Centre d'Economie de la Sorbonne
17060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2019.
- Jørgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2019. "Rational expectations and stochastic systems," Post-Print halshs-01673338, HAL.
- Jørgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2019. "Rational expectations and stochastic systems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01673338, HAL.
- Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
- Adarsh Anand & Mohini Agarwal & Gunjan Bansal & A. H. S. Garmabaki, 2016. "Studying product diffusion based on market coverage," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 135-146, December.
- Shivani Kushwaha & Ajay Kumar, 2024. "Optimizing software release decisions: a TFN-based uncertainty modeling approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3940-3953, August.
- Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
- Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
- Shakshi Singhal & P. K. Kapur & Vivek Kumar & Saurabh Panwar, 2024. "Stochastic debugging based reliability growth models for Open Source Software project," Annals of Operations Research, Springer, vol. 340(1), pages 531-569, September.
- Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.
- Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
More about this item
Keywords
software reliability; reliability growth; learning effect; imperfect debugging; Nonhomogeneous Poisson Process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1744-:d:819432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.