IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v114y2013icp148-154.html
   My bibliography  Save this article

Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems

Author

Listed:
  • Saleh, Joseph H.
  • Saltmarsh, Elizabeth A.
  • Favarò, Francesca M.
  • Brevault, Loïc

Abstract

An important consideration in safety analysis and accident prevention is the identification of and response to accident precursors. These off-nominal events are opportunities to recognize potential accident pathogens, identify overlooked accident sequences, and make technical and organizational decisions to address them before further escalation can occur. When handled properly, the identification of precursors provides an opportunity to interrupt an accident sequence from unfolding; when ignored or missed, precursors may only provide tragic proof after the fact that an accident was preventable.

Suggested Citation

  • Saleh, Joseph H. & Saltmarsh, Elizabeth A. & Favarò, Francesca M. & Brevault, Loïc, 2013. "Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 148-154.
  • Handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:148-154
    DOI: 10.1016/j.ress.2013.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, J.H. & Marais, K.B. & Bakolas, E. & Cowlagi, R.V., 2010. "Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1105-1116.
    2. Rocco S., Claudio M. & Ramirez-Marquez, Jose Emmanuel, 2012. "Innovative approaches for addressing old challenges in component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 123-130.
    3. Vinnem, Jan Erik & Hestad, Jon Andreas & Kvaløy, Jan Terje & Skogdalen, Jon Espen, 2010. "Analysis of root causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1142-1153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andriulo, S. & Gnoni, M.G., 2014. "Measuring the effectiveness of a near-miss management system: An application in an automotive firm supplier," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 154-162.
    2. Yongliang Deng & Liangliang Song & Zhipeng Zhou & Ping Liu, 2017. "An Approach for Understanding and Promoting Coal Mine Safety by Exploring Coal Mine Risk Network," Complexity, Hindawi, vol. 2017, pages 1-17, October.
    3. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    5. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Westreich, Sara & Perlman, Yael & Winkler, Michael, 2021. "Analysis and Implications of the Management of Near-Miss Events: A Game Theoretic Approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Silvia Maria Ansaldi & Patrizia Agnello & Annalisa Pirone & Maria Rosaria Vallerotonda, 2021. "Near Miss Archive: A Challenge to Share Knowledge among Inspectors and Improve Seveso Inspections," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    8. Stroeve, Sybert H. & Som, Pradip & van Doorn, Bas A. & (Bert) Bakker, G.J., 2016. "Strengthening air traffic safety management by moving from outcome-based towards risk-based evaluation of runway incursions," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 93-108.
    9. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Rui Huang & Hui Liu & Hongliang Ma & Yujie Qiang & Kai Pan & Xiaoqing Gou & Xin Wang & Dong Ye & Haining Wang & Adam Glowacz, 2022. "Accident Prevention Analysis: Exploring the Intellectual Structure of a Research Field," Sustainability, MDPI, vol. 14(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstandinidou, Myrto & Nivolianitou, Zoe & Kefalogianni, Eirini & Caroni, Chrys, 2011. "In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1448-1455.
    2. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    3. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    4. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    5. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    6. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. J. S. Busby & A. M. Collins, 2014. "Organizational Sensemaking About Risk Controls: The Case of Offshore Hydrocarbons Production," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1738-1752, September.
    8. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    9. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Kontogiannis, Tom & Malakis, Stathis, 2012. "A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 193-208.
    11. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Raghvendra V. Cowlagi & Joseph H. Saleh, 2013. "Coordinability and Consistency in Accident Causation and Prevention: Formal System Theoretic Concepts for Safety in Multilevel Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 420-433, March.
    13. Wu, Shaomin & Chen, Yi & Wu, Qingtai & Wang, Zhonglai, 2016. "Linking component importance to optimisation of preventive maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 26-32.
    14. Sørskår, Leif Inge K. & Selvik, Jon T. & Abrahamsen, Eirik B., 2019. "On the use of the vision zero principle and the ALARP principle for production loss in the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Novak, Jeremy & Farr-Wharton, Ben & Brunetto, Yvonne & Shacklock, Kate & Brown, Kerry, 2017. "Safety outcomes for engineering asset management organizations: Old problem with new solutions?," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 67-73.
    16. Baroud, Hiba & Barker, Kash, 2018. "A Bayesian kernel approach to modeling resilience-based network component importance," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 10-19.
    17. Bakolas, Efstathios & Saleh, Joseph H., 2011. "Augmenting defense-in-depth with the concepts of observability and diagnosability from Control Theory and Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 184-193.
    18. Favarò, Francesca M. & Saleh, Joseph H., 2016. "Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 316-330.
    19. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    20. Jan-Erik Vinnem, 2013. "Use of accident precursor event investigations in the understanding of major hazard risk potential in the Norwegian offshore industry," Journal of Risk and Reliability, , vol. 227(1), pages 66-79, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:148-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.