IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v138y2015icp21-30.html
   My bibliography  Save this article

A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants

Author

Listed:
  • Park, Jinkyun
  • Jung, Wondea

Abstract

It is evident that the reliability of complex socio-technical systems, such as NPPs (nuclear power plants), is very critical for public safety. For this reason, the DID (defense-in-depth) concept has been adopted as a core principle to ensure the operational safety of NPPs. Regarding this, the provisioning of AOPs (abnormal operating procedures) is essential for implementing the DID concept. Unfortunately, since most AOPs were developed based on operational experience, it is not easy to investigate their coverage in a systematic manner. Therefore, in this study, a framework to identify the coverage of AOPs is proposed based on a SPV (single point vulnerability) model. As for the initial validation of the suggested framework, the coverage of OPR1000 (optimized power reactor 1000MWe) units operating in the Rep. of Korea is analyzed. As a result, it is revealed that their coverage is about 63%. In addition, it is confirmed that one of the component failures distinguished from the proposed framework actually triggered an unexpected reactor trip event in an OPR1000 unit. Therefore, it is possible to expect that the proposed framework can be used as a practical tool to enhance the coverage of AOPs.

Suggested Citation

  • Park, Jinkyun & Jung, Wondea, 2015. "A systematic framework to investigate the coverage of abnormal operating procedures in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 21-30.
  • Handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:21-30
    DOI: 10.1016/j.ress.2015.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201500023X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, J.H. & Marais, K.B. & Bakolas, E. & Cowlagi, R.V., 2010. "Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1105-1116.
    2. Vaurio, Jussi K., 2011. "Importance measures in risk-informed decision making: Ranking, optimisation and configuration control," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1426-1436.
    3. Jung, Woo Sik & Yang, Joon-Eon & Ha, Jaejoo, 2005. "Development of measures to estimate truncation error in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 30-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Park, Jinkyun & Kim, Yochan & Jung, Wondea, 2018. "Calculating nominal human error probabilities from the operation experience of domestic nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 215-225.
    3. Ham, Dong-Han & Park, Jinkyun, 2020. "Use of a big data analysis technique for extracting HRA data from event investigation reports based on the Safety-II concept," Reliability Engineering and System Safety, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    2. Duflot, Nicolas & Bérenguer, Christophe & Dieulle, Laurence & Vasseur, Dominique, 2009. "A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1827-1837.
    3. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    4. Konstandinidou, Myrto & Nivolianitou, Zoe & Kefalogianni, Eirini & Caroni, Chrys, 2011. "In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1448-1455.
    5. Matuzas, V. & Contini, S., 2015. "Dynamic labelling of BDD and ZBDD for efficient non-coherent fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 183-192.
    6. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    7. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    8. Jung, Woo Sik, 2015. "A method to improve cutset probability calculation in probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 134-142.
    9. Saleh, Joseph H. & Saltmarsh, Elizabeth A. & Favarò, Francesca M. & Brevault, Loïc, 2013. "Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 148-154.
    10. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. J. S. Busby & A. M. Collins, 2014. "Organizational Sensemaking About Risk Controls: The Case of Offshore Hydrocarbons Production," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1738-1752, September.
    12. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    13. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Kontogiannis, Tom & Malakis, Stathis, 2012. "A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 193-208.
    15. Raghvendra V. Cowlagi & Joseph H. Saleh, 2013. "Coordinability and Consistency in Accident Causation and Prevention: Formal System Theoretic Concepts for Safety in Multilevel Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 420-433, March.
    16. Wu, Shaomin & Chen, Yi & Wu, Qingtai & Wang, Zhonglai, 2016. "Linking component importance to optimisation of preventive maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 26-32.
    17. Bakolas, Efstathios & Saleh, Joseph H., 2011. "Augmenting defense-in-depth with the concepts of observability and diagnosability from Control Theory and Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 184-193.
    18. Favarò, Francesca M. & Saleh, Joseph H., 2016. "Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 316-330.
    19. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    20. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:21-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.