IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8456-d603741.html
   My bibliography  Save this article

Near Miss Archive: A Challenge to Share Knowledge among Inspectors and Improve Seveso Inspections

Author

Listed:
  • Silvia Maria Ansaldi

    (Department of Innovation Technologies, Inail, Monte Porzio Catone, 00077 Rome, Italy)

  • Patrizia Agnello

    (Department of Innovation Technologies, Inail, Monte Porzio Catone, 00077 Rome, Italy)

  • Annalisa Pirone

    (Department of Innovation Technologies, Inail, 00143 Rome, Italy)

  • Maria Rosaria Vallerotonda

    (Department of Innovation Technologies, Inail, 00143 Rome, Italy)

Abstract

In European Seveso Legislation for the control of the hazard of major accidents (Directive 2015/12/UE), the Safety Management System SMS is an essential obligation for managers and the authorities are required to periodically verify its adequateness through periodical inspections at Seveso sites. One of the pillars of the SMS is the collection and analysis of documents on accidents, near misses, and possible anomalies, in order to identify weaknesses and implement continuous improvement. In Italy, for a few years, the documents, gathered from all Italian Seveso sites by the inspectors, have been archived and used for research purposes. The archive currently contains some 4000 reports, collected in 5 years by some 100 inspectors throughout Italy. This paper discusses in detail the challenges faced to extract the knowledge hidden in the documents and make it usable through the design of a robust model. For this aim, machine learning techniques have been used for preprocessing of the reports for extracting the concepts and their relations, organized into an entity-relation model. The effectiveness of this methodology and its potentiality are pointed out by investigating a few hot topics, exploiting the information contained in the repository.

Suggested Citation

  • Silvia Maria Ansaldi & Patrizia Agnello & Annalisa Pirone & Maria Rosaria Vallerotonda, 2021. "Near Miss Archive: A Challenge to Share Knowledge among Inspectors and Improve Seveso Inspections," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8456-:d:603741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleh, Joseph H. & Saltmarsh, Elizabeth A. & Favarò, Francesca M. & Brevault, Loïc, 2013. "Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 148-154.
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Zhipeng Zhou & Chaozhi Li & Chuanmin Mi & Lingfei Qian, 2019. "Exploring the Potential Use of Near-Miss Information to Improve Construction Safety Performance," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    10. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Tatsuhiko Anzai & Takashi Yamauchi & Masaki Ozawa & Kunihiko Takahashi, 2021. "A Generalized Structural Equation Model Approach to Long Working Hours and Near-Misses among Healthcare Professionals in Japan," IJERPH, MDPI, vol. 18(13), pages 1-11, July.
    14. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    17. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8456-:d:603741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.