IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v132y2014icp154-162.html
   My bibliography  Save this article

Measuring the effectiveness of a near-miss management system: An application in an automotive firm supplier

Author

Listed:
  • Andriulo, S.
  • Gnoni, M.G.

Abstract

Accidents and near-miss events are usually characterized by common causes and different consequences; a near-miss event is a potential hazardous condition where the accident sequence was interrupted; these events have common causes with accidents (or injuries), but, differently from the latters near miss consequences are null (or reduced).

Suggested Citation

  • Andriulo, S. & Gnoni, M.G., 2014. "Measuring the effectiveness of a near-miss management system: An application in an automotive firm supplier," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 154-162.
  • Handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:154-162
    DOI: 10.1016/j.ress.2014.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201400177X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, Joseph H. & Saltmarsh, Elizabeth A. & Favarò, Francesca M. & Brevault, Loïc, 2013. "Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 148-154.
    2. Konstandinidou, Myrto & Nivolianitou, Zoe & Kefalogianni, Eirini & Caroni, Chrys, 2011. "In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1448-1455.
    3. Hale, A.R. & Ale, B.J.M. & Goossens, L.H.J. & Heijer, T. & Bellamy, L.J & Mud, M.L. & Roelen, A. & Baksteen, H. & Post, J. & Papazoglou, I.A. & Bloemhoff, A. & Oh, J.I.H., 2007. "Modeling accidents for prioritizing prevention," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1701-1715.
    4. Khakzad, Nima & Khan, Faisal & Paltrinieri, Nicola, 2014. "On the application of near accident data to risk analysis of major accidents," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 116-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Azadegan, Arash & Srinivasan, Ravi & Blome, Constantin & Tajeddini, Kayhan, 2019. "Learning from near-miss events: An organizational learning perspective on supply chain disruption response," International Journal of Production Economics, Elsevier, vol. 216(C), pages 215-226.
    3. Westreich, Sara & Perlman, Yael & Winkler, Michael, 2021. "Analysis and Implications of the Management of Near-Miss Events: A Game Theoretic Approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    3. Liu, Shengli & Liang, Yongtu, 2021. "Statistics of catastrophic hazardous liquid pipeline accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    5. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    7. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Qi Tong & Thomas Gernay, 2022. "A hierarchical Bayesian model for predicting fire ignitions after an earthquake with application to California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1637-1660, March.
    10. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    11. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    12. Jinshu Cui & Heather Rosoff & Richard S. John, 2017. "A Polytomous Item Response Theory Model for Measuring Near-Miss Appraisal as a Psychological Trait," Decision Analysis, INFORMS, vol. 14(2), pages 75-86, June.
    13. Nima Khakzad & Sina Khakzad & Faisal Khan, 2014. "Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1759-1771, December.
    14. He, Ye & Kuai, Nian-Sheng & Deng, Li-Min & He, Xiong-Yuan, 2021. "A method for assessing Human Error Probability through physiological and psychological factors tests based on CREAM and its applications," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    17. Zhipeng Zhou & Chaozhi Li & Chuanmin Mi & Lingfei Qian, 2019. "Exploring the Potential Use of Near-Miss Information to Improve Construction Safety Performance," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    18. Keisuke Himoto, 2020. "Hierarchical Bayesian Modeling of Post‐Earthquake Ignition Probabilities Considering Inter‐Earthquake Heterogeneity," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1124-1138, June.
    19. Westreich, Sara & Perlman, Yael & Winkler, Michael, 2021. "Analysis and Implications of the Management of Near-Miss Events: A Game Theoretic Approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:154-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.