IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v160y2017icp67-73.html
   My bibliography  Save this article

Safety outcomes for engineering asset management organizations: Old problem with new solutions?

Author

Listed:
  • Novak, Jeremy
  • Farr-Wharton, Ben
  • Brunetto, Yvonne
  • Shacklock, Kate
  • Brown, Kerry

Abstract

The issue of safety and longevity of engineering assets is of increasing importance because of their impact when disasters happen. This paper addresses a literature gap by examining the role of workplace relationships in employees' safety behaviour, and builds on the Resilience Engineering (RE) framework by examining some organisational culture factors affecting how employees behave. A Social Exchange framework is used to examine the impact of supervisor-employee relationships, employee commitment to safety practices, and the type of maintenance culture upon employees’ commitment to safety and safety outcomes. Survey data from 284 technical and engineering employees in engineering asset management organisations within Australia were analyzed using Structural Equation Modelling (SEM). Effective employee relationships with management and a proactive maintenance culture were associated with employee commitment to safety culture and safety outcomes. The findings provide empirical support for embedding an effective organisational culture focused on a proactive maintenance approach, along with ensuring employees are committed to safety processes, to ensure safety outcomes and also asset longevity. One study contribution is that good safety outcomes do not develop in a vacuum; instead they are built on effective workplace relationships. Therefore, SET helps to explain the forming of effective safety culture.

Suggested Citation

  • Novak, Jeremy & Farr-Wharton, Ben & Brunetto, Yvonne & Shacklock, Kate & Brown, Kerry, 2017. "Safety outcomes for engineering asset management organizations: Old problem with new solutions?," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 67-73.
  • Handle: RePEc:eee:reensy:v:160:y:2017:i:c:p:67-73
    DOI: 10.1016/j.ress.2016.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, P.H. & Hale, A.R. & van Gulijk, C., 2013. "A paired comparison approach to improve the quantification of management influences in air transportation," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 52-60.
    2. van der Beek, Dolf & Schraagen, Jan Maarten, 2015. "ADAPTER: Analysing and developing adaptability and performance in teams to enhance resilience," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 33-44.
    3. Furniss, Dominic & Back, Jonathan & Blandford, Ann & Hildebrandt, Michael & Broberg, Helena, 2011. "A resilience markers framework for small teams," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 2-10.
    4. Ping, Robert Jr., 2004. "On assuring valid measures for theoretical models using survey data," Journal of Business Research, Elsevier, vol. 57(2), pages 125-141, February.
    5. Shirali, Gh.A. & Mohammadfam, I. & Ebrahimipour, V., 2013. "A new method for quantitative assessment of resilience engineering by PCA and NT approach: A case study in a process industry," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 88-94.
    6. Pasman, H.J. & Knegtering, B. & Rogers, W.J., 2013. "A holistic approach to control process safety risks: Possible ways forward," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 21-29.
    7. Gomes, Jose O. & Woods, David D. & Carvalho, Paulo V.R. & Huber, Gilbert J. & Borges, Marcos R.S., 2009. "Resilience and brittleness in the offshore helicopter transportation system: The identification of constraints and sacrifice decisions in pilots’ work," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 311-319.
    8. Bozeman, Barry, 2011. "The 2010 BP Gulf of Mexico oil spill: Implications for theory of organizational disaster," Technology in Society, Elsevier, vol. 33(3), pages 244-252.
    9. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    10. Vinnem, Jan Erik & Hestad, Jon Andreas & Kvaløy, Jan Terje & Skogdalen, Jon Espen, 2010. "Analysis of root causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1142-1153.
    11. Oedewald, Pia & Gotcheva, Nadezhda, 2015. "Safety culture and subcontractor network governance in a complex safety critical project," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 106-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marchel Bentoy & Marlon Mata & Jayson Bayogo & Roel Vasquez & Rose Mary Almacen & Samantha Shane Evangelista & Charldy Wenceslao & Jannen Batoon & Maria Diana Lauro & Kafferine Yamagishi & Gamaliel Go, 2022. "Complex Cause-Effect Relationships of Social Capital, Leader-Member Exchange, and Safety Behavior of Workers in Small-Medium Construction Firms and the Moderating Role of Age," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    2. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergström, Johan & van Winsen, Roel & Henriqson, Eder, 2015. "On the rationale of resilience in the domain of safety: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 131-141.
    2. Milch, Vibeke & Laumann, Karin, 2019. "The influence of interorganizational factors on offshore incidents in the Norwegian petroleum industry: Challenges and future directions," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 84-96.
    3. Sungheon Lee & Jaehyun Kim & Awwal M. Arigi & Jonghyun Kim, 2022. "Identification of Contributing Factors to Organizational Resilience in the Emergency Response Organization for Nuclear Power Plants," Energies, MDPI, vol. 15(20), pages 1-24, October.
    4. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    5. Seyed Mohammad Asadzadeh & Hadi Maleki & Mehrab Tanhaeean, 0. "A resilience engineering-based approach to improving service reliability in maintenance organizations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-14.
    6. Mendes, Pietro A.S. & Hall, Jeremy & Matos, Stelvia & Silvestre, Bruno, 2014. "Reforming Brazil׳s offshore oil and gas safety regulatory framework: Lessons from Norway, the United Kingdom and the United States," Energy Policy, Elsevier, vol. 74(C), pages 443-453.
    7. Varajão, João & Fernandes, Gabriela & Amaral, António & Gonçalves, A. Manuela, 2021. "Team Resilience Model: An Empirical Examination of Information Systems Projects," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Ali Azadeh & Mansoureh Hasannia Kolaee & Vahid Salehi, 2016. "The impact of redundancy on resilience engineering in a petrochemical plant by data envelopment analysis," Journal of Risk and Reliability, , vol. 230(3), pages 285-296, June.
    9. Kontogiannis, Tom & Malakis, Stathis, 2012. "A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 193-208.
    10. Seyed Mohammad Asadzadeh & Hadi Maleki & Mehrab Tanhaeean, 2020. "A resilience engineering-based approach to improving service reliability in maintenance organizations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 909-922, October.
    11. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    12. Virginie Fernandez & Yvonne Giordano & Sabrina Loufrani-Fedida, 2017. "Enacting resilience in extreme action teams: The case of French mountain rescue organizing," Post-Print hal-02046087, HAL.
    13. Bellamy, Linda J. & Chambon, Monique & van Guldener, Viola, 2018. "Getting resilience into safety programs using simple tools - a research background and practical implementation," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 171-184.
    14. Teresa Barros & Paula Rodrigues & Nelson Duarte & Xue-Feng Shao & F. V. Martins & H. Barandas-Karl & Xiao-Guang Yue, 2020. "The Impact of Brand Relationships on Corporate Brand Identity and Reputation—An Integrative Model," JRFM, MDPI, vol. 13(6), pages 1-21, June.
    15. Sarah Maslen & Jan Hayes & Janice Wong & Christina Scott-Young, 2020. "Witch hunts and scapegoats: an investigation into the impact of personal liability concerns on engineers’ reporting of risks," Environment Systems and Decisions, Springer, vol. 40(3), pages 413-426, September.
    16. de Carvalho, Paulo Victor Rodrigues, 2011. "The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1482-1498.
    17. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    18. Justina GineikienÄ—, 2013. "Consumer Nostalgia Literature Review And An Alternative Measurement Perspective," Organizations and Markets in Emerging Economies, Faculty of Economics, Vilnius University, vol. 4(2).
    19. Chandra Mahapatra, Subas & Bellamkonda, Raja Shekhar, 2023. "Higher expectations of passengers do really sense: Development and validation a multiple scale-FliQual for air transport service quality," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    20. Verhagen, Tibert & Meents, Selmar, 2007. "A Framework for Developing Semantic Differentials in IS research: Assessing the Meaning of Electronic Marketplace Quality (EMQ)," Serie Research Memoranda 0016, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:160:y:2017:i:c:p:67-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.