IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v68y2012icp104-116.html
   My bibliography  Save this article

Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook

Author

Listed:
  • Huang, Chu-Long
  • Vause, Jonathan
  • Ma, Hwong-Wen
  • Yu, Chang-Ping

Abstract

The essence of sustainable development (SD) is to deliver social and economic development without compromising environmental quality. Material Flow Analysis or Substance Flow Analysis (M/SFA) is a well-established method to assess the sustainability of socioeconomic development and environmental change, particularly from the perspective of improving material/substance flow efficiency. A material/substance flow chart or accounting table makes SD assessment results comprehensive, comparable and verifiable by (1) providing systematic information and indicators for SD assessment, (2) identifying critical pathways, links and key substances in the anthroposphere, and (3) allowing the dynamic interaction between material flow and social, economic and/or environmental processes to be analyzed. However, the role of M/SFA in SD assessment could be expanded by strengthening simultaneous analysis of various features of material/substance flows, integrating M/SFA with other assessment methods, improving sustainability indicators, and further developing standardized methods for material classification, data acquisition and processing, and measuring indirect flows and unused flows. It is anticipated that future improvements in monitoring material/substance flows in the anthroposphere will provide more systematic information, allowing M/SFA to play an even greater role in SD assessment.

Suggested Citation

  • Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
  • Handle: RePEc:eee:recore:v:68:y:2012:i:c:p:104-116
    DOI: 10.1016/j.resconrec.2012.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912001504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuczenski, Brandon & Geyer, Roland, 2010. "Material flow analysis of polyethylene terephthalate in the US, 1996–2007," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1161-1169.
    2. Park, Byung Heung & Gao, Fanxing & Kwon, Eun-ha & Ko, Won Il, 2011. "Comparative study of different nuclear fuel cycle options: Quantitative analysis on material flow," Energy Policy, Elsevier, vol. 39(11), pages 6916-6924.
    3. Yabar, Helmut & Hara, Keishiro & Uwasu, Michinori, 2012. "Comparative assessment of the co-evolution of environmental indicator systems in Japan and China," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 43-51.
    4. Yuan Wang & Jie Chen & Genfa Lu, 2011. "Temporal Causal Relationship between Resource Use and Economic Growth in East China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 19(2), pages 93-108, March.
    5. Bond, Richard & Curran, Johanna & Kirkpatrick, Colin & Lee, Norman & Francis, Paul, 2001. "Integrated Impact Assessment for Sustainable Development: A Case Study Approach," World Development, Elsevier, vol. 29(6), pages 1011-1024, June.
    6. Hinterberger, Friedrich & Luks, Fred & Schmidt-Bleek, Friedrich, 1997. "Material flows vs. 'natural capital': What makes an economy sustainable?," Ecological Economics, Elsevier, vol. 23(1), pages 1-14, October.
    7. Matsuno, Yasunari & Hur, Tak & Fthenakis, Vasilis, 2012. "Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 83-90.
    8. Recalde, Korinti & Wang, Jinlong & Graedel, T.E., 2008. "Aluminium in-use stocks in the state of Connecticut," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1271-1282.
    9. Giljum, Stefan & Burger, Eva & Hinterberger, Friedrich & Lutter, Stephan & Bruckner, Martin, 2011. "A comprehensive set of resource use indicators from the micro to the macro level," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 300-308.
    10. Lynette Cheah & John Heywood & Randolph Kirchain, 2009. "Aluminum Stock and Flows in U.S. Passenger Vehicles and Implications for Energy Use," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 718-734, October.
    11. Park, Jeong-a & Hong, Seok-jin & Kim, Ik & Lee, Ji-yong & Hur, Tak, 2011. "Dynamic material flow analysis of steel resources in Korea," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 456-462.
    12. Ester van der Voet & Lauran van Oers & Igor Nikolic, 2004. "Dematerialization: Not Just a Matter of Weight," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 121-137, October.
    13. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    14. Kovanda, Jan & Weinzettel, Jan & Hak, Tomas, 2009. "Analysis of regional material flows: The case of the Czech Republic," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 243-254.
    15. T. E. Graedel & Dick van Beers & Marlen Bertram & Kensuke Fuse & Robert B. Gordon & Alexander Gritsinin & Ermelinda M. Harper & Amit Kapur & Robert J. Klee & Reid Lifset & Laiq Memon & Sabrina Spatari, 2005. "The Multilevel Cycle of Anthropogenic Zinc," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 67-90, July.
    16. Guo, Xueyi & Song, Yu, 2008. "Substance flow analysis of copper in China," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 874-882.
    17. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    18. Jan Weinzettel & Jan Kovanda, 2009. "Assessing Socioeconomic Metabolism Through Hybrid Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 13(4), pages 607-621, August.
    19. Wallis, Anne M. & Graymore, Michelle L.M. & Richards, Anneke J., 2011. "Significance of environment in the assessment of sustainable development: The case for south west Victoria," Ecological Economics, Elsevier, vol. 70(4), pages 595-605, February.
    20. Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2010. "Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 851-863.
    21. Chen, Weiqiang & Shi, Lei & Qian, Yi, 2010. "Substance flow analysis of aluminium in mainland China for 2001, 2004 and 2007: Exploring its initial sources, eventual sinks and the pathways linking them," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 557-570.
    22. Tachibana, Junzo & Hirota, Keiko & Goto, Naohiro & Fujie, Koichi, 2008. "A method for regional-scale material flow and decoupling analysis: A demonstration case study of Aichi prefecture, Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1382-1390.
    23. Guinee, J. B. & van den Bergh, J. C. J. M. & Boelens, J. & Fraanje, P. J. & Huppes, G. & Kandelaars, P. P. A. A. H. & Lexmond, Th. M. & Moolenaar, S. W. & Olsthoorn, A. A. & Udo de Haes, H. A., 1999. "Evaluation of risks of metal flows and accumulation in economy and environment," Ecological Economics, Elsevier, vol. 30(1), pages 47-65, July.
    24. Mathieux, Fabrice & Brissaud, Daniel, 2010. "End-of-life product-specific material flow analysis. Application to aluminum coming from end-of-life commercial vehicles in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 92-105.
    25. Bouman, Mathijs & Heijungs, Reinout & van der Voet, Ester & van den Bergh, Jeroen C. J. M. & Huppes, Gjalt, 2000. "Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models," Ecological Economics, Elsevier, vol. 32(2), pages 195-216, February.
    26. Yellishetty, Mohan & Ranjith, P.G. & Tharumarajah, A., 2010. "Iron ore and steel production trends and material flows in the world: Is this really sustainable?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1084-1094.
    27. Guo, Xueyi & Zhong, Juya & Song, Yu & Tian, Qinghua, 2010. "Substance flow analysis of zinc in China," Resources, Conservation & Recycling, Elsevier, vol. 54(3), pages 171-177.
    28. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    29. Ziolkowska, Jadwiga R. & Ziolkowski, Bozydar, 2011. "Product generational dematerialization indicator: A case of crude oil in the global economy," Energy, Elsevier, vol. 36(10), pages 5925-5934.
    30. Mutha, Nitin H. & Patel, Martin & Premnath, V., 2006. "Plastics materials flow analysis for India," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 222-244.
    31. Scasny, Milan & Kovanda, Jan & Hak, Tomas, 2003. "Material flow accounts, balances and derived indicators for the Czech Republic during the 1990s: results and recommendations for methodological improvements," Ecological Economics, Elsevier, vol. 45(1), pages 41-57, April.
    32. Hoekstra, Rutger & van den Bergh, Jeroen C.J.M., 2006. "Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations," Ecological Economics, Elsevier, vol. 59(3), pages 375-393, September.
    33. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gsodam, Petra & Lassnig, Melanie & Kreuzeder, Andreas & Mrotzek, Maximilian, 2014. "The Austrian silver cycle: A material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 76-84.
    2. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    4. Chhimwal, Madhukar & Agrawal, Saurabh & Kumar, Girish, 2023. "Markovian approach to evaluate circularity in supply chain of non ferrous metal industry," Resources Policy, Elsevier, vol. 80(C).
    5. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    6. Shanshan Guo & Yinghong Wang, 2019. "Ecological Security Assessment Based on Ecological Footprint Approach in Hulunbeir Grassland, China," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    7. Bai, Lu & Qiao, Qi & Li, Yanping & Wan, Si & Xie, Minghui & Chai, Fahe, 2015. "Statistical entropy analysis of substance flows in a lead smelting process," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 118-128.
    8. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    9. Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
    10. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Wamba, Samuel Fosso & Song, Malin, 2016. "Towards a theory of sustainable consumption and production: Constructs and measurement," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 78-89.
    11. Yu, Chenjian & Li, Huiquan & Jia, Xiaoping & Li, Qiang, 2015. "Improving resource utilization efficiency in China's mineral resource-based cities: A case study of Chengde, Hebei province," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 1-10.
    12. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.
    13. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
    14. Jain, K.P. & Pruyn, J.F.J. & Hopman, J.J., 2016. "Quantitative assessment of material composition of end-of-life ships using onboard documentation," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    2. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    3. Tachibana, Junzo & Hirota, Keiko & Goto, Naohiro & Fujie, Koichi, 2008. "A method for regional-scale material flow and decoupling analysis: A demonstration case study of Aichi prefecture, Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1382-1390.
    4. Cheng, Shengkui & Xu, Zengrang & Su, Yun & Zhen, Lin, 2010. "Spatial and temporal flows of China's forest resources: Development of a framework for evaluating resource efficiency," Ecological Economics, Elsevier, vol. 69(7), pages 1405-1415, May.
    5. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2014. "In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 112-123.
    6. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
    7. Wang, Minxi & Chen, Wu & Li, Xin, 2015. "Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 36-48.
    8. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    9. Kovanda, Jan, 2014. "Incorporation of recycling flows into economy-wide material flow accounting and analysis: A case study for the Czech Republic," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 78-84.
    10. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    11. Gauffin, Alicia & Andersson, Nils Å.I. & Storm, Per & Tilliander, Anders & Jönsson, Pär G., 2017. "Time-varying losses in material flows of steel using dynamic material flow models," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 70-83.
    12. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    13. Jan Kovanda & Tomas Hak, 2008. "Changes in Materials Use in Transition Economies," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 721-738, October.
    14. Huysman, Sofie & Sala, Serenella & Mancini, Lucia & Ardente, Fulvio & Alvarenga, Rodrigo A.F. & De Meester, Steven & Mathieux, Fabrice & Dewulf, Jo, 2015. "Toward a systematized framework for resource efficiency indicators," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 68-76.
    15. Daigo, Ichiro & Osako, Shun & Adachi, Yoshihiro & Matsuno, Yasunari, 2014. "Time-series analysis of global zinc demand associated with steel," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 35-40.
    16. Asma Awan & Sidra Nawaz, 2022. "Towards Green Growth: Monitoring Progress and Investigating Its Determinants in South Asia," Journal of Economic Impact, Science Impact Publishers, vol. 4(3), pages 252-264.
    17. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    18. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    19. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
    20. Li, Ying & Beeton, R.J.S. & Halog, Anthony & Sigler, Thomas, 2016. "Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 87-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:68:y:2012:i:c:p:104-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.