IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i3p171-177.html
   My bibliography  Save this article

Substance flow analysis of zinc in China

Author

Listed:
  • Guo, Xueyi
  • Zhong, Juya
  • Song, Yu
  • Tian, Qinghua

Abstract

A material stock and flow (STAF) model was constructed to track the pathway of zinc in China, 2006, for the study of the industrial metabolism of a certain metal within a regional level. The primary flows of zinc include production, fabrication and manufacturing, use, and waste management. This paper traces the major flows of zinc from ore, to product, to potential secondary resource as it moves through the China's economy over 1 year, and inventory data, and mass balance equations were used to determine the quantity of flows. The domestic ore produced was 3248.3Gg and output of refined lead ingot was 3162.7Gg in 2006. It was calculated that, in the production and manufacture and fabrication stage, the self-supply efficiency of zinc raw materials in 2006 is 87.58% and 94.92%, respectively. The results reveal that China has richer zinc raw resources. But only about 3.68% and 9.06% of the discarded zinc in the two stages were recycled, respectively. While zinc's residence time can be high for many of its applications in the building and construction sector, since the majority of zinc is used as an anti-corrosion coating, there are dissipative losses occurring during the lifetime of products and infrastructure containing zinc. This study and others suggest that zinc losses to the environment are significant in magnitude, and their impacts should be evaluated over time and at various spatial scales. In addition, the results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.

Suggested Citation

  • Guo, Xueyi & Zhong, Juya & Song, Yu & Tian, Qinghua, 2010. "Substance flow analysis of zinc in China," Resources, Conservation & Recycling, Elsevier, vol. 54(3), pages 171-177.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:3:p:171-177
    DOI: 10.1016/j.resconrec.2009.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134490900161X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2009.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Xueyi & Song, Yu, 2008. "Substance flow analysis of copper in China," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 874-882.
    2. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Lingyu & Wang, Anjian & Chen, Qishen & Li, Jianwu, 2013. "Dynamic material flow analysis of zinc resources in China," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 23-31.
    2. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Dynamic material flow analysis of antimony resources in China," Resources Policy, Elsevier, vol. 86(PB).
    3. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    4. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    2. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    3. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    4. Renaud, Karine M. & Manley, Ross & Nassar, Nedal T., 2023. "A comparison of copper use in China and India as a proxy for their economic development," Resources Policy, Elsevier, vol. 80(C).
    5. Tanimoto, Armando H. & Gabarrell Durany, Xavier & Villalba, Gara & Pires, Armando Caldeira, 2010. "Material flow accounting of the copper cycle in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 20-28.
    6. Wang, Minxi & Chen, Wu & Li, Xin, 2015. "Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 36-48.
    7. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:3:p:171-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.