IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v47y2006i3p222-244.html
   My bibliography  Save this article

Plastics materials flow analysis for India

Author

Listed:
  • Mutha, Nitin H.
  • Patel, Martin
  • Premnath, V.

Abstract

Forecasting material flows is essential for sound policy making on issues relating to waste management. This paper presents the results of the plastics materials flow analysis (MFA) for India. In the recent past, India has witnessed a substantial growth in the consumption of plastics and an increased production of plastic waste. Polyolefins account for the major share of 60% in the total plastics consumption in India. Packaging is the major plastics consuming sector, with 42% of the total consumption, followed by consumer products and the construction industry. The relationship observed between plastic consumption and the gross domestic product for several countries was used to estimate future plastics consumption (master curve). Elasticities of the individual material growth with respect to GDP were established for the past and for the next three decades estimated for India thereby assuming a development comparable with that of Western Europe. On this basis, the total plastics consumption is projected to grow by a factor of 6 between 2000 and 2030. The consumption of various end products is combined with their corresponding lifetimes to calculate the total waste quantities. The weighted average lifetime of plastics products was calculated as 8 years. Forty-seven percent of the total plastics waste generated is currently recycled in India; this is much higher than the share of recycling in most of the other countries. The recycling sector alone employs as many people as the plastics processing sector, which employs about eight times more people than the plastics manufacturing sector. Due to the increasing share of long-life products in the economy, and consequently in the volume of waste generated, the share of recycling will decrease to 35% over the next three decades. The total waste available for disposal (excluding recycling) will increase at least 10-fold up to the year 2030 from its current level of 1.3 million tonnes.

Suggested Citation

  • Mutha, Nitin H. & Patel, Martin & Premnath, V., 2006. "Plastics materials flow analysis for India," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 222-244.
  • Handle: RePEc:eee:recore:v:47:y:2006:i:3:p:222-244
    DOI: 10.1016/j.resconrec.2005.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344905001588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2005.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tachibana, Junzo & Hirota, Keiko & Goto, Naohiro & Fujie, Koichi, 2008. "A method for regional-scale material flow and decoupling analysis: A demonstration case study of Aichi prefecture, Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1382-1390.
    2. Bain, Ariana & Shenoy, Megha & Ashton, Weslynne & Chertow, Marian, 2010. "Industrial symbiosis and waste recovery in an Indian industrial area," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1278-1287.
    3. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
    4. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    5. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.
    6. Nandy, Biplob & Sharma, Gaurav & Garg, Saryu & Kumari, Shweta & George, Tess & Sunanda, Yengkhom & Sinha, Bärbel, 2015. "Recovery of consumer waste in India – A mass flow analysis for paper, plastic and glass and the contribution of households and the informal sector," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 167-181.
    7. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    8. Singh, Simron J & Talwar, Simran & Shenoy, Megha, 2021. "Why Socio-metabolic Studies are Central to Ecological Economics," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 4(02), July.
    9. Lopes Silva, Diogo Aparecido & de Oliveira, José Augusto & Saavedra, Yovana M.B. & Ometto, Aldo Roberto & Rieradevall i Pons, Joan & Gabarrell Durany, Xavier, 2015. "Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 157-168.
    10. Kuczenski, Brandon & Geyer, Roland, 2010. "Material flow analysis of polyethylene terephthalate in the US, 1996–2007," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1161-1169.
    11. Taisuke Umesaki & Shoki Kosai & Shunsuke Kashiwakura & Eiji Yamasue, 2024. "Resource Intensity Analysis of Producing 21 Types of Plastic in Terms of Mining Activity," Sustainability, MDPI, vol. 16(7), pages 1-13, March.
    12. Sook-Fun Fong & Rui-Ying Loh & Sang-Long Choi, 2022. "Marketing Strategies and Customer Satisfaction: A Study on the Higher Education Institutions in Johor," Business and Economic Research, Macrothink Institute, vol. 12(2), pages 61-83, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:47:y:2006:i:3:p:222-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.