IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v94y2015icp118-128.html
   My bibliography  Save this article

Statistical entropy analysis of substance flows in a lead smelting process

Author

Listed:
  • Bai, Lu
  • Qiao, Qi
  • Li, Yanping
  • Wan, Si
  • Xie, Minghui
  • Chai, Fahe

Abstract

Substance flow analysis (SFA) is of the most useful decision-support tools in environmental management, and has been applied in many studies. This research used SFA at the production-process level to realize the purposes of pollution prevention and control. One of the lead smelting processes – SKS lead smelting – was chosen as our study object, and onsite monitoring data was collected from a large state-owned lead smelting enterprise in central China. All of the lead-containing material flows in the process were sampled and tested. Lead accounts of each production process and the entire system were established. Statistical entropy analysis, a method tailor-made for SFA, was applied to evaluate the SFA result of the investigated lead smelting process. Two scenarios were put forward to address the problem of mass balance failure. Scenario I represents the situation where all the lead loss is considered and is assumed to be caused by either measurement errors or uncontrolled emissions. Scenario II represents the situation of no lead loss (the ideal conditions). The results showed that lead ingot (the final product) accounted for 81.08% of the output lead, lead bullion stock accounted for 9.96%, emissions (including lead loss) accounted for 8.96%. The results also showed that the production process of Scenario II concentrated more lead than did Scenario I. Four lead-loss flows, which accounted for only 4.69% of the output substance flows, were found to determine whether the smelting process of Scenario I diluted or concentrated the lead. The uncontrolled lead-containing dust and gas emissions from the processes of casting, reverberatory furnace, and primary smelting are cause for concern. This lead loss from uncontrolled emissions and measurement errors has been long ignored, but should be given top priority for pollution prevention and the control of heavy metals in the lead smelting industry. Some recommendations for improving heavy-metal controls in production enterprises are put forward at the end of this article.

Suggested Citation

  • Bai, Lu & Qiao, Qi & Li, Yanping & Wan, Si & Xie, Minghui & Chai, Fahe, 2015. "Statistical entropy analysis of substance flows in a lead smelting process," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 118-128.
  • Handle: RePEc:eee:recore:v:94:y:2015:i:c:p:118-128
    DOI: 10.1016/j.resconrec.2014.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    2. Yue, Q. & Lu, Z.W. & Zhi, S.K., 2009. "Copper cycle in China and its entropy analysis," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 680-687.
    3. Rechberger, H. & Graedel, T. E., 2002. "The contemporary European copper cycle: statistical entropy analysis," Ecological Economics, Elsevier, vol. 42(1-2), pages 59-72, August.
    4. Cha, Kyounghoon & Son, Minjung & Matsuno, Yasunari & Fthenakis, Vasilis & Hur, Tak, 2013. "Substance flow analysis of cadmium in Korea," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 31-39.
    5. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanping & Su, Zhen & Qiao, Qi & Hu, Xuewen & Wan, Si & Zhao, Ruonan, 2017. "Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 1-11.
    2. Fred Compart & Martin Gräbner, 2024. "Using Yield and Entropy-Based Characteristics for Circular Economy," Circular Economy and Sustainability, Springer, vol. 4(3), pages 2169-2197, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanping & Su, Zhen & Qiao, Qi & Hu, Xuewen & Wan, Si & Zhao, Ruonan, 2017. "Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 1-11.
    2. Fred Compart & Martin Gräbner, 2024. "Using Yield and Entropy-Based Characteristics for Circular Economy," Circular Economy and Sustainability, Springer, vol. 4(3), pages 2169-2197, September.
    3. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    4. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    5. Wang, Minxi & Chen, Wu & Li, Xin, 2015. "Substance flow analysis of copper in production stage in the U.S. from 1974 to 2012," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 36-48.
    6. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    7. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    9. Milovantseva, Natalia & Fitzpatrick, Colin, 2015. "Barriers to electronics reuse of transboundary e-waste shipment regulations: An evaluation based on industry experiences," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 170-177.
    10. Yoshida, Aya & Terazono, Atsushi & Ballesteros, Florencio C. & Nguyen, Duc-Quang & Sukandar, Sunandar & Kojima, Michikazu & Sakata, Shozo, 2016. "E-waste recycling processes in Indonesia, the Philippines, and Vietnam: A case study of cathode ray tube TVs and monitors," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 48-58.
    11. Kapur, Amit, 2006. "The future of the red metal—A developing country perspective from India," Resources, Conservation & Recycling, Elsevier, vol. 47(2), pages 160-182.
    12. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    13. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    14. Horațiu Vermeșan & Ancuța-Elena Tiuc & Marius Purcar, 2019. "Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    15. Ardente, Fulvio & Mathieux, Fabrice & Recchioni, Marco, 2014. "Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 158-171.
    16. Alessandro Becci & Alessia Amato & Giulia Merli & Francesca Beolchini, 2024. "The Green Indium Patented Technology SCRIPT, for Indium Recovery from Liquid Crystal Displays: Bench Scale Validation Driven by Sustainability Assessment," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    17. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    18. Jamie Wordsworth & Nadia Khan & Jack Blackburn & Jason E. Camp & Athanasios Angelis-Dimakis, 2021. "Technoeconomic Assessment of Organic Halide Based Gold Recovery from Waste Electronic and Electrical Equipment," Resources, MDPI, vol. 10(2), pages 1-12, February.
    19. Lu, Yan & Xu, Zhenming, 2016. "Precious metals recovery from waste printed circuit boards: A review for current status and perspective," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 28-39.
    20. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:94:y:2015:i:c:p:118-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.