IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v117y2017ipbp183-194.html
   My bibliography  Save this article

Comprehensive analysis and quantification of national plastic flows: The case of Austria

Author

Listed:
  • Van Eygen, Emile
  • Feketitsch, Julia
  • Laner, David
  • Rechberger, Helmut
  • Fellner, Johann

Abstract

Plastics have been increasingly used in a wide range of applications, generating important waste streams, but overall information on their flows through society is generally not available. Therefore, the national plastic flows in Austria were analyzed and quantified from the production stage up to the waste management stage, for the reference year of 2010. To achieve this, material flow analysis was used to set up a model quantitatively describing the Austrian plastics budget, and the quality of the data sources was assessed using uncertainty characterization. The results show that about 1.1 million tonnes (132kg/cap·a±2%) of primary plastics were produced in Austria, whereas about 1.3 million tonnes (156kg/cap·a±5%) of plastics products were consumed. Roughly one third of the consumed amount contributed to net stock increase in all consumption sectors, and about half of this increase occurred in building and construction, whereas packaging waste constituted approximately half of total post-consumer wastes (70kg/cap·a±4%). Of the total waste amount (including traded and production waste, 91kg/cap·a±3%), the majority was incinerated in waste-to-energy plants or in the cement industry (46% and 21% respectively), whereas the rest was mainly recycled mechanically or chemically (21% and 10% respectively). The results identify the major national flows and processes of plastics, and evaluate the overall data availability for quantifying these flows. Furthermore, the increasing amounts of plastic wastes, due to large stocks having been built up in sectors with long product lifetimes, necessitate assessing which processing capacities are needed and which treatment priorities are to be set in waste management.

Suggested Citation

  • Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
  • Handle: RePEc:eee:recore:v:117:y:2017:i:pb:p:183-194
    DOI: 10.1016/j.resconrec.2016.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916302956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuczenski, Brandon & Geyer, Roland, 2010. "Material flow analysis of polyethylene terephthalate in the US, 1996–2007," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1161-1169.
    2. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    3. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    4. Dana Vyzinkarova & Paul H. Brunner, 2013. "Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 900-911, December.
    5. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2014. "In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 112-123.
    6. Shinichiro Nakamura & Kenichi Nakajima & Yoshie Yoshizawa & Kazuyo Matsubae‐Yokoyama & Tetsuya Nagasaka, 2009. "Analyzing Polyvinyl Chloride in Japan With the Waste Input−Output Material Flow Analysis Model," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 706-717, October.
    7. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    8. Spatari, S. & Bertram, M. & Fuse, K. & Graedel, T. E. & Rechberger, H., 2002. "The contemporary European copper cycle: 1 year stocks and flows," Ecological Economics, Elsevier, vol. 42(1-2), pages 27-42, August.
    9. Mutha, Nitin H. & Patel, Martin & Premnath, V., 2006. "Plastics materials flow analysis for India," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 222-244.
    10. David Laner & Helmut Rechberger & Thomas Astrup, 2015. "Applying Fuzzy and Probabilistic Uncertainty Concepts to the Material Flow Analysis of Palladium in Austria," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1055-1069, December.
    11. Allwood, Julian M. & Ashby, Michael F. & Gutowski, Timothy G. & Worrell, Ernst, 2011. "Material efficiency: A white paper," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 362-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    2. Jan Kovanda, 2021. "Economy‐wide material system analysis: Mapping material flows through the economy," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1121-1135, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciacci, L. & Passarini, F. & Vassura, I., 2017. "The European PVC cycle: In-use stock and flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 108-116.
    2. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    3. Ueberschaar, Maximilian & Geiping, Julia & Zamzow, Malte & Flamme, Sabine & Rotter, Vera Susanne, 2017. "Assessment of element-specific recycling efficiency in WEEE pre-processing," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 25-41.
    4. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    5. Ardente, Fulvio & Mathieux, Fabrice & Recchioni, Marco, 2014. "Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 158-171.
    6. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    7. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    8. Torsten Hummen & Stefanie Hellweg & Ramin Roshandel, 2023. "Optimizing Lifespan of Circular Products: A Generic Dynamic Programming Approach for Energy-Using Products," Energies, MDPI, vol. 16(18), pages 1-27, September.
    9. Friedrich A. Halstenberg & Kai Lindow & Rainer Stark, 2019. "Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering," Sustainability, MDPI, vol. 11(13), pages 1-36, June.
    10. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    11. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    12. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    13. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    14. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    15. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
    16. Nađa Džubur & David Laner, 2018. "Evaluation of Modeling Approaches to Determine End‐of‐Life Flows Associated with Buildings: A Viennese Case Study on Wood and Contaminants," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1156-1169, October.
    17. Graedel, T. E. & Bertram, M. & Fuse, K. & Gordon, R. B. & Lifset, R. & Rechberger, H. & Spatari, S., 2002. "The contemporary European copper cycle: The characterization of technological copper cycles," Ecological Economics, Elsevier, vol. 42(1-2), pages 9-26, August.
    18. Kuczenski, Brandon & Geyer, Roland, 2010. "Material flow analysis of polyethylene terephthalate in the US, 1996–2007," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1161-1169.
    19. Ardente, Fulvio & Calero Pastor, Maria & Mathieux, Fabrice & Talens Peiró, Laura, 2015. "Analysis of end-of-life treatments of commercial refrigerating appliances: Bridging product and waste policies," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 42-52.
    20. Klinglmair, Manfred & Zoboli, Ottavia & Laner, David & Rechberger, Helmut & Astrup, Thomas Fruergaard & Scheutz, Charlotte, 2016. "The effect of data structure and model choices on MFA results: A comparison of phosphorus balances for Denmark and Austria," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 166-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:117:y:2017:i:pb:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.