IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v124y2010i2p475-481.html
   My bibliography  Save this article

LT variance or LT mean reduction in supply chain management: Which one has a higher impact on SC performance?

Author

Listed:
  • Chaharsooghi, S. Kamal
  • Heydari, Jafar

Abstract

Lead time (LT) is an inseparable factor of any supply chain (SC). Lead time uncertainty is known as a type of supply uncertainty that affects ordering policies, inventory levels, and product availability level. There are two main strategies concerning SC uncertainties: adapter and shaper strategies that can be used in environments with LT uncertainty. As for LT mean, it can be reduced by improving the performance of upstream members. In this paper, relative importance of these two parameters to be reduced by these strategies is determined by investigating the effects of both LT mean and LT variance on supply chain performance indices. Simulation and multivariate models have shown that LT variance has a stronger impact on SC performance measures (including Bullwhip effect, holding inventory, stock-out size and number of stock-outs). This study can help managers in (1) rebalancing of these two parameters by applying a proper investment strategy; (2) suitable selection of service providers in transportation based on LT parameters.

Suggested Citation

  • Chaharsooghi, S. Kamal & Heydari, Jafar, 2010. "LT variance or LT mean reduction in supply chain management: Which one has a higher impact on SC performance?," International Journal of Production Economics, Elsevier, vol. 124(2), pages 475-481, April.
  • Handle: RePEc:eee:proeco:v:124:y:2010:i:2:p:475-481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00457-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jeon G. & Chatfield, Dean & Harrison, Terry P. & Hayya, Jack C., 2006. "Quantifying the bullwhip effect in a supply chain with stochastic lead time," European Journal of Operational Research, Elsevier, vol. 173(2), pages 617-636, September.
    2. He, Xin James & Kim, Jeon G. & Hayya, Jack C., 2005. "The cost of lead-time variability: The case of the exponential distribution," International Journal of Production Economics, Elsevier, vol. 97(2), pages 130-142, August.
    3. Bookbinder, James H. & Cakanyildirim, Metin, 1999. "Random lead times and expedited orders in (Q,r) inventory systems," European Journal of Operational Research, Elsevier, vol. 115(2), pages 300-313, June.
    4. Kaminsky, Philip & Kaya, Onur, 2008. "Inventory positioning, scheduling and lead-time quotation in supply chains," International Journal of Production Economics, Elsevier, vol. 114(1), pages 276-293, July.
    5. Ryu, Si Wook & Lee, Kyung Keun, 2003. "A stochastic inventory model of dual sourced supply chain with lead-time reduction," International Journal of Production Economics, Elsevier, vol. 81(1), pages 513-524, January.
    6. Chauhan, Satyaveer S. & Dolgui, Alexandre & Proth, Jean-Marie, 2009. "A continuous model for supply planning of assembly systems with stochastic component procurement times," International Journal of Production Economics, Elsevier, vol. 120(2), pages 411-417, August.
    7. Das, Sanchoy K. & Abdel-Malek, Layek, 2003. "Modeling the flexibility of order quantities and lead-times in supply chains," International Journal of Production Economics, Elsevier, vol. 85(2), pages 171-181, August.
    8. So, Kut C. & Zheng, Xiaona, 2003. "Impact of supplier's lead time and forecast demand updating on retailer's order quantity variability in a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 86(2), pages 169-179, November.
    9. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    10. Leng, Mingming & Parlar, Mahmut, 2009. "Lead-time reduction in a two-level supply chain: Non-cooperative equilibria vs. coordination with a profit-sharing contract," International Journal of Production Economics, Elsevier, vol. 118(2), pages 521-544, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuoqun Li & Weiwei Fei & Ermin Zhou & Yuvraj Gajpal & Xiding Chen, 2019. "The Impact of Lead Time Uncertainty on Supply Chain Performance Considering Carbon Cost," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    2. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    3. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    4. Benjamin Nitsche, 2018. "Unravelling the Complexity of Supply Chain Volatility Management," Logistics, MDPI, vol. 2(3), pages 1-26, August.
    5. Bandaly, Dia & Satir, Ahmet & Shanker, Latha, 2016. "Impact of lead time variability in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 180(C), pages 88-100.
    6. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    7. Tyworth, John E., 2018. "A note on lead-time paradoxes and a tale of competing prescriptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 139-150.
    8. Michna, Zbigniew & Disney, Stephen M. & Nielsen, Peter, 2020. "The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts," Omega, Elsevier, vol. 93(C).
    9. Ortega Jimenez, Cesar H. & Machuca, Jose A.D. & Garrido-Vega, Pedro & Filippini, Roberto, 2015. "The pursuit of responsiveness in production environments: From flexibility to reconfigurability," International Journal of Production Economics, Elsevier, vol. 163(C), pages 157-172.
    10. Jian, Ming & Fang, Xin & Jin, Liu-qian & Rajapov, Azamat, 2015. "The impact of lead time compression on demand forecasting risk and production cost: A newsvendor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 61-72.
    11. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    12. Asif Iqbal Malik & Biswajit Sarkar, 2019. "Coordinating Supply-Chain Management under Stochastic Fuzzy Environment and Lead-Time Reduction," Mathematics, MDPI, vol. 7(5), pages 1-28, May.
    13. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.
    14. Louly, Mohamed-Aly & Dolgui, Alexandre, 2013. "Optimal MRP parameters for a single item inventory with random replenishment lead time, POQ policy and service level constraint," International Journal of Production Economics, Elsevier, vol. 143(1), pages 35-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    2. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    3. Fang, Xin & Zhang, Cheng & Robb, David J. & Blackburn, Joseph D., 2013. "Decision support for lead time and demand variability reduction," Omega, Elsevier, vol. 41(2), pages 390-396.
    4. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    5. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    6. Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2021. "Suboptimal sliding manifold For nonlinear supply chain with time delay," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 151-173, July.
    7. Wu, Zhengping & Zhai, Xin & Liu, Zhongyi, 2015. "The inventory billboard effect on the lead-time decision," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 45-53.
    8. Leng, Mingming & Parlar, Mahmut, 2009. "Lead-time reduction in a two-level supply chain: Non-cooperative equilibria vs. coordination with a profit-sharing contract," International Journal of Production Economics, Elsevier, vol. 118(2), pages 521-544, April.
    9. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    10. Ciancimino, Elena & Cannella, Salvatore & Canca Ortiz, José David & Framiñán Torres, José Manuel, 2009. "Análisis multinivel de cadenas de suministros: dos técnicas de resolución del efecto bullwhip // Supply Chain Multi-level Analysis: Two Bullwhip Dampening Approaches," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 7-28, December.
    11. Cai, Wenbo & Abdel-Malek, Layek & Hoseini, Babak & Rajaei Dehkordi, Sharareh, 2015. "Impact of flexible contracts on the performance of both retailer and supplier," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 429-444.
    12. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    13. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    14. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    15. Riezebos, Jan, 2006. "Inventory order crossovers," International Journal of Production Economics, Elsevier, vol. 104(2), pages 666-675, December.
    16. Kim, Taebok & Glock, Christoph H. & Kwon, Yongjang, 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Omega, Elsevier, vol. 43(C), pages 30-40.
    17. Chandra, Charu & Grabis, Janis, 2008. "Inventory management with variable lead-time dependent procurement cost," Omega, Elsevier, vol. 36(5), pages 877-887, October.
    18. Louly, Mohamed-Aly & Dolgui, Alexandre, 2011. "Optimal time phasing and periodicity for MRP with POQ policy," International Journal of Production Economics, Elsevier, vol. 131(1), pages 76-86, May.
    19. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    20. Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:124:y:2010:i:2:p:475-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.