IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v169y2015icp44-54.html
   My bibliography  Save this article

Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts

Author

Listed:
  • Sadeghi, Ahmad

Abstract

In this paper, a two-product and two-echelon supply chain is considered in order to quantify the bullwhip effect. Demands of the products are correlated and are represented by a first order vector autoregressive model. Retailer uses “order up to” ordering policy for replenishment of stocks and utilizes exponential smoothing forecast method to predict demand in lead-time period. According to the mentioned assumptions, an equation is derived for bullwhip effect measurement and then a numerical example is presented for a better perception of the bullwhip effect behavior when the parameters change. A comparison of the bullwhip effect measure has been done when two main forecasting methods i.e. exponential smoothing and moving average are used and empirical results are provided. At last, a cost analysis is conducted based on shortage and holding cost under different bullwhip effect measures.

Suggested Citation

  • Sadeghi, Ahmad, 2015. "Providing a measure for bullwhip effect in a two-product supply chain with exponential smoothing forecasts," International Journal of Production Economics, Elsevier, vol. 169(C), pages 44-54.
  • Handle: RePEc:eee:proeco:v:169:y:2015:i:c:p:44-54
    DOI: 10.1016/j.ijpe.2015.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315002601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaksic, Marko & Rusjan, Borut, 2008. "The effect of replenishment policies on the bullwhip effect: A transfer function approach," European Journal of Operational Research, Elsevier, vol. 184(3), pages 946-961, February.
    2. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    3. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    4. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    5. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    6. Kim, Jeon G. & Chatfield, Dean & Harrison, Terry P. & Hayya, Jack C., 2006. "Quantifying the bullwhip effect in a supply chain with stochastic lead time," European Journal of Operational Research, Elsevier, vol. 173(2), pages 617-636, September.
    7. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    8. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
    9. Sucky, Eric, 2009. "The bullwhip effect in supply chains--An overestimated problem?," International Journal of Production Economics, Elsevier, vol. 118(1), pages 311-322, March.
    10. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    11. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    12. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    13. Sodhi, ManMohan S. & Sodhi, Navdeep S. & Tang, Christopher S., 2014. "An EOQ model for MRO customers under stochastic price to quantify bullwhip effect for the manufacturer," International Journal of Production Economics, Elsevier, vol. 155(C), pages 132-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bandaly, Dia & Satir, Ahmet & Shanker, Latha, 2016. "Impact of lead time variability in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 180(C), pages 88-100.
    2. Hosoda, Takamichi & Disney, Stephen M., 2018. "A unified theory of the dynamics of closed-loop supply chains," European Journal of Operational Research, Elsevier, vol. 269(1), pages 313-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    3. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    4. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    5. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    6. Junhai Ma & Xiaogang Ma, 2017. "Measure of the bullwhip effect considering the market competition between two retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 313-326, January.
    7. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    8. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    9. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    10. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    11. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    12. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    13. Adenso-Díaz, Belarmino & Moreno, Plácido & Gutiérrez, Ester & Lozano, Sebastián, 2012. "An analysis of the main factors affecting bullwhip in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 135(2), pages 917-928.
    14. Chiang, Chung-Yean & Lin, Winston T. & Suresh, Nallan C., 2016. "An empirically-simulated investigation of the impact of demand forecasting on the bullwhip effect: Evidence from U.S. auto industry," International Journal of Production Economics, Elsevier, vol. 177(C), pages 53-65.
    15. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    16. Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
    17. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.
    18. Reza Hadizadeh & Amir Abbas Shojaie, 2017. "A Measure of SCM Bullwhip Effect Under Mixed Autoregressive-Moving Average with Errors Heteroscedasticity (ARMA(1,1)–GARCH(1,1)) Model," Annals of Data Science, Springer, vol. 4(1), pages 83-104, March.
    19. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    20. Ciancimino, Elena & Cannella, Salvatore & Canca Ortiz, José David & Framiñán Torres, José Manuel, 2009. "Análisis multinivel de cadenas de suministros: dos técnicas de resolución del efecto bullwhip // Supply Chain Multi-level Analysis: Two Bullwhip Dampening Approaches," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 7-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:169:y:2015:i:c:p:44-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.