IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v226y2024icp283-305.html
   My bibliography  Save this article

Effect of fear with saturated fear cost and harvesting on aquatic food chain model (plankton–fish model) in the presence of nanoparticles

Author

Listed:
  • Rashi,
  • Singh, Harendra Pal
  • Singh, Suruchi

Abstract

Studying the interplay of phytoplankton–zooplankton–fish (PP–ZP–F) in an aquatic system is crucial for better understanding of nutrient cycling, assessing ecosystem health, predicting and mitigating harmful algal blooms, and managing fisheries in the water bodies. In order to investigate the effectiveness of nanoparticles (NPs), fear, and harvesting, this paper focuses on exploring the dynamics of a food chain model among PP–ZP–F species. We consider the fear of fish on zooplankton species (which reduces the reproduction rate of ZPs) with saturated fear cost in the presence of nanoparticles (NPs) and harvesting in fish. The system dynamics are studied from the viewpoint of proving positivity, boundedness, and uniqueness, followed by analysing the existence and local stability of biologically feasible equilibria. Conditions for the global stability of the interior equilibrium point are also found. Furthermore, we established the transversality conditions for the occurrence of Hopf, transcritical, and saddle–node bifurcations. To validate our theoretical results, we made numerous phase portraits, time-series graphs, tables showing the extinction of species, and bifurcation diagrams. It is numerically observed that increasing the contact rate of NPs with PPs makes the system stable from chaos, and further increase of contact rate may lead to extinction. Chaos at a low contact rate can also be managed by increasing the fear level, and the chaotic behaviour at a low fear level can again be controlled by enhancing the harvesting of fish species. Over-exploitation may result in the extinction of fish, whereas fear may promote coexistence, stability, and long-term survival of the species. Increased saturated fear cost can make the system chaotic from stable dynamics. Therefore, the theoretical as well as numerical findings of our paper may be of great interest in estimating the behaviour of aquatic systems biologically and practically.

Suggested Citation

  • Rashi, & Singh, Harendra Pal & Singh, Suruchi, 2024. "Effect of fear with saturated fear cost and harvesting on aquatic food chain model (plankton–fish model) in the presence of nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 283-305.
  • Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:283-305
    DOI: 10.1016/j.matcom.2024.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fangyuan Hua & Kathryn E. Sieving & Robert J. Fletcher & Chloe A. Wright, 2014. "Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(3), pages 509-519.
    2. Panja, Prabir & Mondal, Shyamal Kumar & Jana, Dipak Kumar, 2017. "Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 389-399.
    3. Hossain, Mainul & Pati, N.C. & Pal, Saheb & Rana, Sourav & Pal, Nikhil & Layek, G.C., 2021. "Bifurcations and multistability in a food chain model with nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 808-825.
    4. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Narayan Mondal & Dipesh Barman & Shariful Alam, 2021. "Impact of adult predator incited fear in a stage-structured prey–predator model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9280-9307, June.
    6. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    7. Justin P. Suraci & Michael Clinchy & Lawrence M. Dill & Devin Roberts & Liana Y. Zanette, 2016. "Fear of large carnivores causes a trophic cascade," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Tiwari, Vandana & Tripathi, Jai Prakash & Mishra, Swati & Upadhyay, Ranjit Kumar, 2020. "Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    3. Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
    5. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    6. Nirapada Santra & Sudeshna Mondal & Guruprasad Samanta, 2022. "Complex Dynamics of a Predator–Prey Interaction with Fear Effect in Deterministic and Fluctuating Environments," Mathematics, MDPI, vol. 10(20), pages 1-38, October.
    7. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    9. Banamali Maji & Samares Pal, 2022. "Impact of fear effect exerted by Pterois volitans on a coral reef ecosystem with parrotfish refuge and harvesting of both fishes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2267-2287, February.
    10. Garai, Shilpa & Pati, N.C. & Pal, Nikhil & Layek, G.C., 2022. "Organized periodic structures and coexistence of triple attractors in a predator–prey model with fear and refuge," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    11. Sun, Xiuli, 2023. "Dynamics of a diffusive predator–prey model with nonlocal fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Pal, Debjit & Ghorai, Santu & Kesh, Dipak & Mukherjee, Debasis, 2024. "Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    13. Jialin Chen & Xiaqing He & Fengde Chen, 2021. "The Influence of Fear Effect to a Discrete-Time Predator-Prey System with Predator Has Other Food Resource," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    14. Sajan, & Kumar Choudhary, Kapil & Dubey, Balram, 2023. "A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    15. Zainab Saeed Abbas & Raid Kamel Naji, 2022. "Modeling and Analysis of the Influence of Fear on a Harvested Food Web System," Mathematics, MDPI, vol. 10(18), pages 1-37, September.
    16. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    17. Xue, Yalong, 2024. "Impact of both-density-dependent fear effect in a Leslie–Gower predator–prey model with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    18. Hiba Abdullah Ibrahim & Raid Kamel Naji, 2023. "The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey," Mathematics, MDPI, vol. 11(13), pages 1-28, June.
    19. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    20. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:283-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.