IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v458y2023ics0096300323004058.html
   My bibliography  Save this article

A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system

Author

Listed:
  • Sajan,
  • Kumar Choudhary, Kapil
  • Dubey, Balram

Abstract

The interaction between phytoplankton and zooplankton has a significant impact on the marine ecology. The interplay between these two species is the building blocks for most of the food webs operating in an aquatic ecosphere. The environmental toxins released by different external sources also affect the phytoplankton-zooplankton dynamics. In the present study, we propose a model to explore the kinetics of a nutrient-phytoplankton-zooplankton-environmental toxins (NPZT) system. The defence mechanism of phytoplankton against zooplankton is reflected through modified Holling type IV response, whereas the consumption of nutrients by phytoplankton is outlined by Holling type II response. The external toxins are assumed to have the capability of reducing the birth rate of phytoplankton species after coming into contact with their cells. To make our model more pragmatic, seasonal variation in the parameters is also taken into account. Firstly, we do the analysis related to the autonomous model (non-seasonal) like; its boundedness, existence of equilibrium points, their stability analysis, and occurrence of Hopf-bifurcation. Further, for the non-autonomous model (seasonal), we analyze the existence of positive periodic solution and its global stability. Through numerical simulations, we observe that for the non-seasonal model, increasing the rate of suppressing phytoplankton’s growth by environmental toxin, and rate at which environmental toxin is added to system make it unstable through Hopf-bifurcation. These oscillations can be removed by raising phytoplankton’s inhibitory effect against zooplankton, and this increment also leads to the extinction of the zooplankton population, making zooplankton free equilibrium a stable one. Both models, non-seasonal as well as seasonal manifest different types of multistability, and this is an exciting character associated with non-linear models. We also note that the inclusion of seasonality in our system promotes the coexistence of all populations. Further, through numerical simulations, we show that making some of the parameters seasonal can cause the emergence of chaos in the system. To verify chaos, we sketch the Poincaré map and evaluate the maximum Lyapunov exponent. The seasonal model also shows the switching of stability through different periodic and chaotic windows on varying the maximum intrinsic growth rate for phytoplankton, and contact rate between environmental toxin and phytoplankton. To substantiate our results, we picture several time-series graphs, basins of attraction, one and two-parametric bifurcation diagrams. Thus we expect that the present work can assist biologists and mathematicians in studying nutrient-plankton systems in a more detailed and realistic manner. This study can also help researchers in the estimation of non-seasonal as well as seasonal parameters while studying these types of complex non-linear models. Therefore, the present work seems to be enriched from a mathematical and biological point of view.

Suggested Citation

  • Sajan, & Kumar Choudhary, Kapil & Dubey, Balram, 2023. "A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system," Applied Mathematics and Computation, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004058
    DOI: 10.1016/j.amc.2023.128236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323004058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panja, Prabir & Mondal, Shyamal Kumar & Jana, Dipak Kumar, 2017. "Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 389-399.
    2. Thakur, Nilesh Kumar & Ojha, Archana & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2021. "An investigation of delay induced stability transition in nutrient-plankton systems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liumeng Yang & Ruichun He & Jie Wang & Hongxing Zhao & Huo Chai, 2024. "Analysis of Dynamic Behavior of Gravity Model Using the Techniques of Road Saturation and Hilbert Curve Dimensionality Reduction," Sustainability, MDPI, vol. 16(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sk Golam Mortoja & Prabir Panja & Shyamal Kumar Mondal, 2023. "Stability Analysis of Plankton–Fish Dynamics with Cannibalism Effect and Proportionate Harvesting on Fish," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    2. Guo, Qing & Wang, Yi & Dai, Chuanjun & Wang, Lijun & Liu, He & Li, Jianbing & Tiwari, Pankaj Kumar & Zhao, Min, 2023. "Dynamics of a stochastic nutrient–plankton model with regime switching," Ecological Modelling, Elsevier, vol. 477(C).
    3. Hossain, Mainul & Pati, N.C. & Pal, Saheb & Rana, Sourav & Pal, Nikhil & Layek, G.C., 2021. "Bifurcations and multistability in a food chain model with nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 808-825.
    4. Xu, Chaoqun & Chen, Qiucun, 2024. "The effects of additional food and environmental stochasticity on the asymptotic properties of a nutrient–phytoplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Rashi, & Singh, Harendra Pal & Singh, Suruchi, 2024. "Effect of fear with saturated fear cost and harvesting on aquatic food chain model (plankton–fish model) in the presence of nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 283-305.
    6. Renu, & Upadhyay, Ranjit Kumar & Tiwari, S.P. & Yadav, R.P., 2023. "Analysis of interval-valued model for interaction between plankton-fish population in marine ecosystem," Ecological Modelling, Elsevier, vol. 484(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.