IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics0096300324003886.html
   My bibliography  Save this article

Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help

Author

Listed:
  • Pal, Debjit
  • Ghorai, Santu
  • Kesh, Dipak
  • Mukherjee, Debasis

Abstract

Recognizing the relationship between the spatial patterns in species concentrations and ecological heterogeneity is crucial for understanding demographics and species governance in a given domain, as ecological patterning processes are believed to be imitated in real ecosystems. In this present article, we have considered a two-prey-one-predator system with Holling type-II functional response where both the preys have fear of predator and compete in the absence of predator. Additionally, we have assumed that both the prey help each other when the predator attacks them. We have incorporated self-diffusion in this system under Neumann boundary conditions. The existence and stability conditions of different equilibria are discussed. We have studied the Hopf bifurcation around positive offset and derived the stability and direction of periodic solution. We have done a series of numerical simulations to ensure our theoretical finding. Diffusion-driven instability conditions are obtained. Different instability regions and fascinating patterns, such as spots, mixtures, and stripes, are depicted. Spatiotemporal dynamics also reflects that prey populations are located in isolated areas of low population concentration with increasing level of fear, whereas an increase in handling time forms lower-density stripes. But with increasing help, prey becomes more concentrated in some stripe regions. In the Hopf-Turing region, it is observed that the diffusion coefficient of predators can stabilize the system. Overall, pattern creation in predator-prey systems can help anticipate long-term system behaviour and analyze the influence of ecological factors on system dynamics.

Suggested Citation

  • Pal, Debjit & Ghorai, Santu & Kesh, Dipak & Mukherjee, Debasis, 2024. "Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324003886
    DOI: 10.1016/j.amc.2024.128927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elettreby, M.F., 2009. "Two-prey one-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2018-2027.
    2. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    3. Alsakaji, Hebatallah J. & Kundu, Soumen & Rihan, Fathalla A., 2021. "Delay differential model of one-predator two-prey system with Monod-Haldane and holling type II functional responses," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    4. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2023. "Qualitative study of cross-diffusion and pattern formation in Leslie–Gower predator–prey model with fear and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Tousheng & Yu, Chengfeng & Zhang, Kui & Liu, Xingyu & Zhen, Jiulong & Wang, Lan, 2023. "Complex pattern dynamics and synchronization in a coupled spatiotemporal plankton system with zooplankton vertical migration," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    4. Pan, Yuxuan & Zhu, Linhe, 2024. "Parameter identification method of information propagation models based on different network structures," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Xiaoran Wang & Huimei Liu & Wencai Zhao, 2024. "A Predator–Prey System with a Modified Leslie–Gower and Prey Stage Structure Scheme in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    6. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Chen Zhang & Xianyi Li, 2023. "Dynamics of a Discrete Leslie–Gower Model with Harvesting and Holling-II Functional Response," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    9. Ying Yu & Yahui Chen & You Zhou, 2023. "Cross-Diffusion-Induced Turing Instability in a Two-Prey One-Predator System," Mathematics, MDPI, vol. 11(11), pages 1-12, May.
    10. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    11. Li, Shuai & Huang, Chengdai & Song, Xinyu, 2023. "Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator–prey model via crossing curves method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    13. Yujing Yang & Wenzhe Tang, 2018. "Research on a 3D Predator-Prey Evolutionary System in Real Estate Market," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    14. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    15. Kumbhakar, Ruma & Hossain, Mainul & Karmakar, Sarbari & Pal, Nikhil, 2024. "An investigation of the parameter space in a tri-trophic food chain model with refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 37-59.
    16. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    17. Jana, Soovoojeet & Ghorai, Abhijit & Guria, Srabani & Kar, T.K., 2015. "Global dynamics of a predator, weaker prey and stronger prey system," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 235-248.
    18. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Liyun Lai & Zhenliang Zhu & Fengde Chen, 2020. "Stability and Bifurcation in a Predator–Prey Model with the Additive Allee Effect and the Fear Effect," Mathematics, MDPI, vol. 8(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324003886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.