IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v102y2021ics0305048320307258.html
   My bibliography  Save this article

Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm

Author

Listed:
  • Zhang, Huimin
  • Li, Shukai
  • Wang, Yihui
  • Yang, Lixing
  • Gao, Ziyou

Abstract

To ensure the efficient operation and low maintenance costs of high-speed railway lines, a collaborative real-time optimization strategy for train rescheduling and track emergency maintenance is proposed in this paper. This strategy not only makes online decisions on the track emergency maintenance, but simultaneously deals with the delays caused by the track emergency and disturbances. Based on a bi-directional railway line, a mixed-integer nonlinear optimization model is established, in which the decision variables mainly include the track maintenance intervention type, the end time of track maintenance, arrival/departure time, arrival/departure orders, stopping plans, and train cancellations. The proposed nonlinear model is converted to an equivalent linear model by a linearization method to reduce the computational burden. Moreover, a Lagrangian relaxation-based decomposition algorithm under a rolling horizon framework is designed to satisfy the real-time performance further. Particularly, the rolling horizon framework divides the whole time horizon into three stages according to the status of the maintenance work, i.e., the maintenance decision-making stage, the maintenance stage, and the maintenance completion stage. Furthermore, the Lagrangian relaxation-based algorithm decomposes the original large-scale optimization problem into several smaller sub-problems, which can be computed in parallel to improve the solution procedure. This designed algorithm not only reduces the computation effort for the real-time implementation, but also realizes online feedback correction and improves the robustness of the control strategy. Several numerical experiments are carried out based on the data of Beijing-Shanghai high-speed railway to demonstrate the feasibility and effectiveness of the proposed strategy.

Suggested Citation

  • Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320307258
    DOI: 10.1016/j.omega.2020.102371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048320307258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2020.102371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yeran & Mannino, Carlo & Yang, Lixing & Tang, Tao, 2020. "Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 38-61.
    2. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
    3. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    4. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    5. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    6. Astorino, Annabella & Gaudioso, Manlio & Miglionico, Giovanna, 2018. "Lagrangian relaxation for the directional sensor coverage problem with continuous orientation," Omega, Elsevier, vol. 75(C), pages 77-86.
    7. Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2017. "Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 113-137.
    8. Van Aken, Sander & Bešinović, Nikola & Goverde, Rob M.P., 2017. "Designing alternative railway timetables under infrastructure maintenance possessions," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 224-238.
    9. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    10. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Kumar, Uday & Gao, Ziyou, 2019. "Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors," Omega, Elsevier, vol. 87(C), pages 86-104.
    11. Baldi, Mauro M. & Heinicke, Franziska & Simroth, Axel & Tadei, Roberto, 2016. "New heuristics for the Stochastic Tactical Railway Maintenance Problem," Omega, Elsevier, vol. 63(C), pages 94-102.
    12. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    13. Alice Consilvio & Angela Febbraro & Rossella Meo & Nicola Sacco, 2019. "Risk-based optimal scheduling of maintenance activities in a railway network," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 435-465, December.
    14. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    15. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    16. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    17. Luan, Xiaojie & De Schutter, Bart & Meng, Lingyun & Corman, Francesco, 2020. "Decomposition and distributed optimization of real-time traffic management for large-scale railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 72-97.
    18. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    19. Francesco Corman & Egidio Quaglietta & Rob M. P. Goverde, 2018. "Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(4), pages 421-447, May.
    20. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    21. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    22. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    23. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    24. Acuna-Agost, Rodrigo & Michelon, Philippe & Feillet, Dominique & Gueye, Serigne, 2011. "SAPI: Statistical Analysis of Propagation of Incidents. A new approach for rescheduling trains after disruptions," European Journal of Operational Research, Elsevier, vol. 215(1), pages 227-243, November.
    25. Min, Yun-Hong & Park, Myoung-Ju & Hong, Sung-Pil & Hong, Soon-Heum, 2011. "An appraisal of a column-generation-based algorithm for centralized train-conflict resolution on a metropolitan railway network," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 409-429, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    2. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    3. Mannino, Carlo & Nakkerud, Andreas, 2023. "Optimal Train Rescheduling in Oslo Central Station," Omega, Elsevier, vol. 116(C).
    4. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    5. Yuan, Yin & Li, Shukai & Yang, Lixing & Gao, Ziyou, 2022. "Real-time optimization of train regulation and passenger flow control for urban rail transit network under frequent disturbances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Zhengwen Liao, 2023. "Rescheduling Out-of-Gauge Trains with Speed Restrictions and Temporal Blockades on the Opposite-Direction Track," Mathematics, MDPI, vol. 11(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    2. Wang, Yihui & Zhao, Kangqi & D’Ariano, Andrea & Niu, Ru & Li, Shukai & Luan, Xiaojie, 2021. "Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 87-117.
    3. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    4. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    6. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    7. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    9. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    11. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    12. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    13. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    14. Yuan, Yin & Li, Shukai & Yang, Lixing & Gao, Ziyou, 2022. "Real-time optimization of train regulation and passenger flow control for urban rail transit network under frequent disturbances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    16. Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    17. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    18. Xuelei Meng & Yahui Wang & Li Lin & Lei Li & Limin Jia, 2021. "An Integrated Model of Train Re-Scheduling and Control for High-Speed Railway," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    19. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    20. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320307258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.