IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i1p211-224.html
   My bibliography  Save this article

Alternating Lagrangian decomposition for integrated airline crew scheduling problem

Author

Listed:
  • Zeighami, Vahid
  • Saddoune, Mohammed
  • Soumis, François

Abstract

The airline crew scheduling problem is usually solved sequentially in two main steps because of its complexity: the crew pairing followed by the crew assignment. However, finding a globally optimal solution via the sequential approach may be impossible because the decision domain of the crew assignment problem is reduced by decisions made in the pairing problem. This study considers the crew scheduling problem in a personalized context where each pilot and copilot requests a set of preferred flights and vacations each month. We propose a model that completely integrates the crew pairing and personalized assignment problems to generate personalized monthly schedules for a given set of pilots and copilots simultaneously in a single optimization step. The model keeps the pairings in the two problems as similar as possible so that the propagation of perturbations arising during the operation is reduced. We develop an integrated algorithm that combines alternating Lagrangian decomposition, column generation, and dynamic constraint aggregation. We conduct computational experiments on a set of real instances from a major US carrier. Our integrated approach produces significant cost savings and better satisfaction of crew preferences compared with the traditional sequential approach.

Suggested Citation

  • Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:211-224
    DOI: 10.1016/j.ejor.2020.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720304161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    2. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Desrochers, Martin & Soumis, Francois, 1988. "A reoptimization algorithm for the shortest path problem with time windows," European Journal of Operational Research, Elsevier, vol. 35(2), pages 242-254, May.
    5. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    6. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    7. Guo, Yufeng & Mellouli, Taieb & Suhl, Leena & Thiel, Markus P., 2006. "A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1169-1181, June.
    8. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    9. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    10. Diego Klabjan & Ellis L. Johnson & George L. Nemhauser & Eric Gelman & Srini Ramaswamy, 2002. "Airline Crew Scheduling with Time Windows and Plane-Count Constraints," Transportation Science, INFORMS, vol. 36(3), pages 337-348, August.
    11. Cacchiani, Valentina & Salazar-González, Juan-José, 2020. "Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier," Omega, Elsevier, vol. 91(C).
    12. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    13. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    14. Issmail Elhallaoui & Daniel Villeneuve & François Soumis & Guy Desaulniers, 2005. "Dynamic Aggregation of Set-Partitioning Constraints in Column Generation," Operations Research, INFORMS, vol. 53(4), pages 632-645, August.
    15. Zeghal, F.M. & Minoux, M., 2006. "Modeling and solving a Crew Assignment Problem in air transportation," European Journal of Operational Research, Elsevier, vol. 175(1), pages 187-209, November.
    16. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    17. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    18. David Antunes & Vikrant Vaze & António Pais Antunes, 2019. "A Robust Pairing Model for Airline Crew Scheduling," Transportation Science, INFORMS, vol. 53(6), pages 1751-1771, November.
    19. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    2. Philippe Racette & Frédéric Quesnel & Andrea Lodi & François Soumis, 2024. "Gaining insight into crew rostering instances through ML-based sequential assignment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 537-578, October.
    3. Glomb, Lukas & Liers, Frauke & Rösel, Florian, 2023. "Optimizing integrated aircraft assignment and turnaround handling," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1051-1071.
    4. Ding, Chengjin & Chen, Xinyuan & Wu, Weiwei & Wei, Wenbin & Xin, Zelin, 2023. "Game-theoretic analysis of the impact of crew overnight hotel cost on airlines’ fleet assignment and crew pairing," Journal of Air Transport Management, Elsevier, vol. 113(C).
    5. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    6. van Rossum, B.T.C. & Dollevoet, T. & Huisman, D., 2024. "Railway crew planning with fairness over time," European Journal of Operational Research, Elsevier, vol. 318(1), pages 55-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    2. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    3. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    4. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    5. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    6. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    7. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    8. Frédéric Quesnel & Guy Desaulniers & Frédéric Quesnel, 2020. "Improving Air Crew Rostering by Considering Crew Preferences in the Crew Pairing Problem," Transportation Science, INFORMS, vol. 54(1), pages 97-114, January.
    9. Schrotenboer, Albert H. & Wenneker, Rob & Ursavas, Evrim & Zhu, Stuart X., 2023. "Reliable reserve-crew scheduling for airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    10. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    11. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    12. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    13. Valentina Cacchiani & Juan-José Salazar-González, 2017. "Optimal Solutions to a Real-World Integrated Airline Scheduling Problem," Transportation Science, INFORMS, vol. 51(1), pages 250-268, February.
    14. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    15. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    16. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    17. Guy Desaulniers & François Lessard & Mohammed Saddoune & François Soumis, 2020. "Dynamic Constraint Aggregation for Solving Very Large-scale Airline Crew Pairing Problems," SN Operations Research Forum, Springer, vol. 1(3), pages 1-23, September.
    18. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    19. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    20. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:211-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.