IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v42y2008i4p405-419.html
   My bibliography  Save this article

Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time

Author

Listed:
  • Andrea D'Ariano

    (Department of Transport and Planning, Delft University of Technology, 2628 CN Delft, The Netherlands)

  • Francesco Corman

    (Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre, 00146 Roma, Italy)

  • Dario Pacciarelli

    (Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre, 00146 Roma, Italy)

  • Marco Pranzo

    (Dipartimento di Ingegneria dell'Informazione, Università di Siena, 53100 Siena, Italy)

Abstract

Traffic controllers regulate railway traffic by sequencing train movements and setting routes with the aim of ensuring smooth train behaviour and limiting, as much as possible, train delays. In this paper, we describe the implementation of a real-time traffic management system, called ROMA (Railway traffic Optimization by Means of Alternative graphs), to support controllers in the everyday task of managing disturbances. We make use of a branch-and-bound algorithm for sequencing train movements, while a local search algorithm is developed for rerouting optimization purposes. The compound problem of routing and sequencing trains is approached iteratively, computing an optimal train sequencing for given train routes and then improving this solution by locally rerouting some trains. An extensive computational study is carried out, based on a dispatching area of the Dutch railway network. We study practical size instances, and include in the model important operational constraints, including rolling stock and passenger connections. Different types of disturbances are analysed, including train delays and blocked tracks. Comparison with common dispatching practice shows the high potential of the system as an effective support tool to improve punctuality.

Suggested Citation

  • Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
  • Handle: RePEc:inm:ortrsc:v:42:y:2008:i:4:p:405-419
    DOI: 10.1287/trsc.1080.0247
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1080.0247
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1080.0247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jurjen S. Hooghiemstra & Leo G. Kroon & Michiel A. Odijk & Marc Salomon & Peter J. Zwaneveld, 1999. "Decision Support Systems Support the Search for Win-Win Solutions in Railway Network Design," Interfaces, INFORMS, vol. 29(2), pages 15-32, April.
    2. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    3. Gabrio Caimi & Dan Burkolter & Thomas Herrmann, 2005. "Finding Delay-Tolerant Train Routings through Stations," Operations Research Proceedings, in: Hein Fleuren & Dick Hertog & Peter Kort (ed.), Operations Research Proceedings 2004, pages 136-143, Springer.
    4. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    5. Egon Balas, 1969. "Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm," Operations Research, INFORMS, vol. 17(6), pages 941-957, December.
    6. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    7. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    8. Kroon, Leo G. & Edwin Romeijn, H. & Zwaneveld, Peter J., 1997. "Routing trains through railway stations: complexity issues," European Journal of Operational Research, Elsevier, vol. 98(3), pages 485-498, May.
    9. Dorfman, M. J. & Medanic, J., 2004. "Scheduling trains on a railway network using a discrete event model of railway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 81-98, January.
    10. Dimitris Bertsimas & Sarah Stock Patterson, 2000. "The Traffic Flow Management Rerouting Problem in Air Traffic Control: A Dynamic Network Flow Approach," Transportation Science, INFORMS, vol. 34(3), pages 239-255, August.
    11. Carey, Malachy & Carville, Sinead, 2003. "Scheduling and platforming trains at busy complex stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 195-224, March.
    12. Fioole, Pieter-Jan & Kroon, Leo & Maroti, Gabor & Schrijver, Alexander, 2006. "A rolling stock circulation model for combining and splitting of passenger trains," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1281-1297, October.
    13. Mazzarello, Maura & Ottaviani, Ennio, 2007. "A traffic management system for real-time traffic optimisation in railways," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 246-274, February.
    14. Rodriguez, Joaquín, 2007. "A constraint programming model for real-time train scheduling at junctions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 231-245, February.
    15. Higgins, A. & Kozan, E. & Ferreira, L., 1996. "Optimal scheduling of trains on a single line track," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 147-161, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    2. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    3. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    4. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    5. Flamini, Marta & Pacciarelli, Dario, 2008. "Real time management of a metro rail terminus," European Journal of Operational Research, Elsevier, vol. 189(3), pages 746-761, September.
    6. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    7. Richard Lusby & Jesper Larsen & David Ryan & Matthias Ehrgott, 2011. "Routing Trains Through Railway Junctions: A New Set-Packing Approach," Transportation Science, INFORMS, vol. 45(2), pages 228-245, May.
    8. Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
    9. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    10. Burdett, R.L. & Kozan, E., 2009. "Techniques for inserting additional trains into existing timetables," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 821-836, September.
    11. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    12. G. Caimi & F. Chudak & M. Fuchsberger & M. Laumanns & R. Zenklusen, 2011. "A New Resource-Constrained Multicommodity Flow Model for Conflict-Free Train Routing and Scheduling," Transportation Science, INFORMS, vol. 45(2), pages 212-227, May.
    13. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    14. Wenliang Zhou & Xiaorong You & Wenzhuang Fan, 2020. "A Mixed Integer Linear Programming Method for Simultaneous Multi-Periodic Train Timetabling and Routing on a High-Speed Rail Network," Sustainability, MDPI, vol. 12(3), pages 1-34, February.
    15. Wang, Yihui & Tang, Tao & Ning, Bin & Meng, Lingyun, 2017. "Integrated optimization of regular train schedule and train circulation plan for urban rail transit lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 83-104.
    16. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    17. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    18. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    19. Mina Aliakbari & Joseph Geunes, 2022. "Multiple Train Repositioning Operations in a Railyard Network," SN Operations Research Forum, Springer, vol. 3(4), pages 1-31, December.
    20. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:42:y:2008:i:4:p:405-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.