IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v59y2014icp22-44.html
   My bibliography  Save this article

Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem

Author

Listed:
  • Yang, Lixing
  • Zhou, Xuesong

Abstract

Using a sample-based representation scheme to capture spatial and temporal travel time correlations, this article constructs an integer programming model for finding the a priori least expected time paths. We explicitly consider the non-anticipativity constraint associated with the a priori path in a time-dependent and stochastic network, and propose a number of reformulations to establish linear inequalities that can be easily dualized by a Lagrangian relaxation solution approach. The relaxed model is further decomposed into two sub-problems, which can be solved directly by using a modified label-correcting algorithm and a simple single-value linear programming method. Several solution algorithms, including a sub-gradient method, a branch and bound method, and heuristics with additional constraints on Lagrangian multipliers, are proposed to improve solution quality and find approximate optimal solutions. The numerical experiments investigate the quality and computational efficiency of the proposed solution approach.

Suggested Citation

  • Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
  • Handle: RePEc:eee:transb:v:59:y:2014:i:c:p:22-44
    DOI: 10.1016/j.trb.2013.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513001951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    2. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    3. Xing, Tao & Zhou, Xuesong, 2011. "Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1660-1679.
    4. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
    5. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    6. Mark D. Hickman & David H. Bernstein, 1997. "Transit Service and Path Choice Models in Stochastic and Time-Dependent Networks," Transportation Science, INFORMS, vol. 31(2), pages 129-146, May.
    7. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    8. Yang, Baiyu & Miller-Hooks, Elise, 2004. "Adaptive routing considering delays due to signal operations," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 385-413, June.
    9. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    10. Avijit Mukherjee & Mark Hansen, 2007. "A Dynamic Stochastic Model for the Single Airport Ground Holding Problem," Transportation Science, INFORMS, vol. 41(4), pages 444-456, November.
    11. Richetta, Octavio & Odoni, Amedeo R., 1994. "Dynamic solution to the ground-holding problem in air traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 167-185, May.
    12. Chen, Peng & Nie, Yu (Marco), 2013. "Bicriterion shortest path problem with a general nonadditive cost," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 419-435.
    13. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    14. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    15. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    16. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    17. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    2. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    3. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    4. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    5. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    6. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    7. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    8. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
    9. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    10. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
    11. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.
    12. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    13. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
    14. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    15. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    16. Prakash, A. Arun, 2018. "Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 127-147.
    17. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    18. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
    19. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
    20. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:59:y:2014:i:c:p:22-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.