IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v159y2022ics1366554522000205.html
   My bibliography  Save this article

Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach

Author

Listed:
  • Lu, Gongyuan
  • Ning, Jia
  • Liu, Xiaobo
  • Nie, Yu (Marco)

Abstract

This paper proposes a route-based model for the Train Platforming and Rescheduling Problem (TPRP). Built on the concept of Degree of Conflict (DOC), the proposed model can accommodate various interlocking mechanisms with an aggregate railway yard representation. Thanks to the topology of a typical yard, such an aggregate representation promises to reduce the size of the optimization problems concerning yard operations. The TPRP model is formulated as a mixed integer linear program, and solved using both a commercial solver and two heuristic algorithms developed based on the idea of rolling horizon. The proposed model and algorithms are validated using several case studies constructed using data collected at a large high-speed railway station in China. We find the proposed TPRP model can produce, with reasonable computation resources, high quality platform/schedule decisions for real-world applications. In addition, the heuristic algorithms consistently offer high quality approximate solutions at a computational cost considerably lower than what is demanded by a benchmark commercial solver. The results from a simulation model show the differences between various interlocking mechanisms are well captured using a unified aggregate yard representation based on DOC. As expected, more flexible interlocking mechanisms can achieve greater operational efficiency at the expense of looser safety standards.

Suggested Citation

  • Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:transe:v:159:y:2022:i:c:s1366554522000205
    DOI: 10.1016/j.tre.2022.102622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522000205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabrio Caimi & Dan Burkolter & Thomas Herrmann & Fabian Chudak & Marco Laumanns, 2009. "Design of a Railway Scheduling Model for Dense Services," Networks and Spatial Economics, Springer, vol. 9(1), pages 25-46, March.
    2. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    3. Carey, Malachy & Crawford, Ivan, 2007. "Scheduling trains on a network of busy complex stations," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 159-178, February.
    4. Carey, Malachy, 1994. "A model and strategy for train pathing with choice of lines, platforms, and routes," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 333-353, October.
    5. Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
    6. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    7. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    8. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    9. Peter J. Zwaneveld & Leo G. Kroon & H. Edwin Romeijn & Marc Salomon & Stéphane Dauzère-Pérès & Stan P. M. Van Hoesel & Harrie W. Ambergen, 1996. "Routing Trains Through Railway Stations: Model Formulation and Algorithms," Transportation Science, INFORMS, vol. 30(3), pages 181-194, August.
    10. Chakroborty, Partha & Vikram, Durgesh, 2008. "Optimum assignment of trains to platforms under partial schedule compliance," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 169-184, February.
    11. Alain Billionnet, 2003. "Using Integer Programming to Solve the Train-Platforming Problem," Transportation Science, INFORMS, vol. 37(2), pages 213-222, May.
    12. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.
    13. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    14. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    15. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    16. Susumu Morito & Kosuke Hara & Jun Imaizumi & Satoshi Kato, 2017. "Train Platforming at a Terminal and Its Adjacent Station to Maximize Throughput," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 181-188, Springer.
    17. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    18. Carey, Malachy & Carville, Sinead, 2003. "Scheduling and platforming trains at busy complex stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 195-224, March.
    19. Samà, Marcella & D’Ariano, Andrea & Pacciarelli, Dario, 2013. "Rolling horizon approach for aircraft scheduling in the terminal control area of busy airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 140-155.
    20. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    21. Pellegrini, Paola & Pesenti, Raffaele & Rodriguez, Joaquin, 2019. "Efficient train re-routing and rescheduling: Valid inequalities and reformulation of RECIFE-MILP," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 33-48.
    22. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    23. Alberto Caprara & Laura Galli & Paolo Toth, 2011. "Solution of the Train Platforming Problem," Transportation Science, INFORMS, vol. 45(2), pages 246-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinggui Zhang & Ruihua Hu & Qiongfang Zeng & Yuhang Wang & Ya Liu & Shan Huang, 2023. "Optimal Train Platforming with Shunting Operations for Multidirectional Passenger Stations: A Case Study of Guangzhou Station," Mathematics, MDPI, vol. 11(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    2. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    4. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    6. Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
    7. Zhu, Yongqiu & Goverde, Rob M.P., 2019. "Railway timetable rescheduling with flexible stopping and flexible short-turning during disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 149-181.
    8. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    9. Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
    10. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    11. Yinggui Zhang & Ruihua Hu & Qiongfang Zeng & Yuhang Wang & Ya Liu & Shan Huang, 2023. "Optimal Train Platforming with Shunting Operations for Multidirectional Passenger Stations: A Case Study of Guangzhou Station," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    12. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    13. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    14. Zhan, Shuguang & Kroon, Leo G. & Zhao, Jun & Peng, Qiyuan, 2016. "A rolling horizon approach to the high speed train rescheduling problem in case of a partial segment blockage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 32-61.
    15. Van Thielen, Sofie & Corman, Francesco & Vansteenwegen, Pieter, 2018. "Considering a dynamic impact zone for real-time railway traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 39-59.
    16. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    17. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    18. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    19. E. Ursavas & Stuart X. Zhu, 2018. "Integrated Passenger and Freight Train Planning on Shared-Use Corridors," Service Science, INFORMS, vol. 52(6), pages 1376-1390, December.
    20. Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:159:y:2022:i:c:s1366554522000205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.