IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v128y2024ics030504832400080x.html
   My bibliography  Save this article

Rescheduling to trade off between global disruption of original jobs with flexibility and scheduling cost of new jobs

Author

Listed:
  • Chen, Rubing
  • Cheng, T.C.E.
  • Ng, C.T.
  • Wang, Jun-Qiang
  • Wei, Hongjun
  • Yuan, Jinjiang

Abstract

In this paper we introduce and study the rescheduling problem to trade off between global disruption of the original jobs with flexibility and the scheduling cost of the new jobs. A set of original jobs has been scheduled on a single machine. But before the processing of original jobs begins, a set of new jobs arrives unexpectedly. The scheduler needs to adjust the existing schedule with a view to finding a cost-efficient schedule for the new jobs without causing too much disruption of the original schedule. We make three assumptions that are different from those in the literature: (i) the original jobs are regarded as a unified whole (a big job) and the global disruption of the original jobs is considered, (ii) the original jobs can be split into small pieces in a schedule, which enables effective control of the global disruption, and (iii) the cost of the original jobs depends on the global disruption, while the cost of the new jobs is expressed as a regular scheduling criterion, such as the maximum lateness, the total weighted completion time, and total weighted number of tardy jobs. We analyze the computational complexity of variants of the rescheduling problem.

Suggested Citation

  • Chen, Rubing & Cheng, T.C.E. & Ng, C.T. & Wang, Jun-Qiang & Wei, Hongjun & Yuan, Jinjiang, 2024. "Rescheduling to trade off between global disruption of original jobs with flexibility and scheduling cost of new jobs," Omega, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:jomega:v:128:y:2024:i:c:s030504832400080x
    DOI: 10.1016/j.omega.2024.103114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832400080X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    2. Jinjiang Yuan & Yundong Mu & Lingfa Lu & Wenhua Li, 2007. "Rescheduling With Release Dates To Minimize Total Sequence Disruption Under A Limit On The Makespan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 789-796.
    3. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    4. Wenchang Luo & Taibo Luo & Randy Goebel & Guohui Lin, 2018. "Rescheduling due to machine disruption to minimize the total weighted completion time," Journal of Scheduling, Springer, vol. 21(5), pages 565-578, October.
    5. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
    6. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    7. Lu, Haimin & Pei, Zhi, 2023. "Single machine scheduling with release dates: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 308(1), pages 19-37.
    8. Le Liu & Hong Zhou, 2015. "Single-machine rescheduling with deterioration and learning effects against the maximum sequence disruption," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2640-2658, October.
    9. Nicholas G. Hall & Chris N. Potts, 2010. "Rescheduling for Job Unavailability," Operations Research, INFORMS, vol. 58(3), pages 746-755, June.
    10. Qiulan Zhao & Lingfa Lu & Jinjiang Yuan, 2016. "Rescheduling with new orders and general maximum allowable time disruptions," 4OR, Springer, vol. 14(3), pages 261-280, September.
    11. Mannino, Carlo & Nakkerud, Andreas, 2023. "Optimal Train Rescheduling in Oslo Central Station," Omega, Elsevier, vol. 116(C).
    12. Nicholas G. Hall & Zhixin Liu & Chris N. Potts, 2007. "Rescheduling for Multiple New Orders," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 633-645, November.
    13. Yuan, Jinjiang & Mu, Yundong, 2007. "Rescheduling with release dates to minimize makespan under a limit on the maximum sequence disruption," European Journal of Operational Research, Elsevier, vol. 182(2), pages 936-944, October.
    14. Xingong Zhang & Win-Chin Lin & Chin-Chia Wu, 2022. "Rescheduling problems with allowing for the unexpected new jobs arrival," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 630-645, April.
    15. Hoogeveen, H. & Lenté, C. & T’kindt, V., 2012. "Rescheduling for new orders on a single machine with setup times," European Journal of Operational Research, Elsevier, vol. 223(1), pages 40-46.
    16. Tsung-Chyan Lai & Yuri N. Sotskov & Natalja G. Egorova & Frank Werner, 2018. "The optimality box in uncertain data for minimising the sum of the weighted job completion times," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6336-6362, October.
    17. Nicholas G. Hall & Chris N. Potts, 2004. "Rescheduling for New Orders," Operations Research, INFORMS, vol. 52(3), pages 440-453, June.
    18. Qiulan Zhao & Jinjiang Yuan, 2017. "Rescheduling to Minimize the Maximum Lateness Under the Sequence Disruptions of Original Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-12, October.
    19. Norbis, Mario I. & MacGregor Smith, J., 1988. "A multiobjective, multi-level heuristic for dynamic resource constrained scheduling problems," European Journal of Operational Research, Elsevier, vol. 33(1), pages 30-41, January.
    20. Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy & Julia Resch & Giovanni Righini, 2021. "Optimally rescheduling jobs with a Last-In-First-Out buffer," Journal of Scheduling, Springer, vol. 24(6), pages 663-680, December.
    21. Ulrich Pferschy & Julia Resch & Giovanni Righini, 2023. "Algorithms for rescheduling jobs with a LIFO buffer to minimize the weighted number of late jobs," Journal of Scheduling, Springer, vol. 26(3), pages 267-287, June.
    22. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingong Zhang & Win-Chin Lin & Chin-Chia Wu, 2022. "Rescheduling problems with allowing for the unexpected new jobs arrival," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 630-645, April.
    2. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    3. Qiulan Zhao & Lingfa Lu & Jinjiang Yuan, 2016. "Rescheduling with new orders and general maximum allowable time disruptions," 4OR, Springer, vol. 14(3), pages 261-280, September.
    4. Wenchang Luo & Taibo Luo & Randy Goebel & Guohui Lin, 2018. "Rescheduling due to machine disruption to minimize the total weighted completion time," Journal of Scheduling, Springer, vol. 21(5), pages 565-578, October.
    5. Qiulan Zhao & Jinjiang Yuan, 2017. "Rescheduling to Minimize the Maximum Lateness Under the Sequence Disruptions of Original Jobs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-12, October.
    6. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
    7. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2018. "Cost allocation in rescheduling with machine unavailable period," European Journal of Operational Research, Elsevier, vol. 266(1), pages 16-28.
    8. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    9. Li, Chung-Lun & Li, Feng, 2020. "Rescheduling production and outbound deliveries when transportation service is disrupted," European Journal of Operational Research, Elsevier, vol. 286(1), pages 138-148.
    10. Ulrich Pferschy & Julia Resch & Giovanni Righini, 2023. "Algorithms for rescheduling jobs with a LIFO buffer to minimize the weighted number of late jobs," Journal of Scheduling, Springer, vol. 26(3), pages 267-287, June.
    11. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    12. Hoogeveen, H. & Lenté, C. & T’kindt, V., 2012. "Rescheduling for new orders on a single machine with setup times," European Journal of Operational Research, Elsevier, vol. 223(1), pages 40-46.
    13. Guanghua Wu & Hongli Zhu, 2024. "Single-Machine Rescheduling with Rejection and an Operator No-Availability Period," Mathematics, MDPI, vol. 12(23), pages 1-11, November.
    14. Paz Perez-Gonzalez & Jose M. Framinan, 2018. "Single machine interfering jobs problem with flowtime objective," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 953-972, June.
    15. Liu, Weihua & Liang, Zhicheng & Ye, Zi & Liu, Liang, 2016. "The optimal decision of customer order decoupling point for order insertion scheduling in logistics service supply chain," International Journal of Production Economics, Elsevier, vol. 175(C), pages 50-60.
    16. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    17. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    18. Chen, Zebin & D’Ariano, Andrea & Li, Shukai & Tessitore, Marta Leonina & Yang, Lixing, 2024. "Robust dynamic train regulation integrated with stop-skipping strategy in urban rail networks: An outer approximation based solution method," Omega, Elsevier, vol. 128(C).
    19. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    20. Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy & Julia Resch & Giovanni Righini, 2021. "Optimally rescheduling jobs with a Last-In-First-Out buffer," Journal of Scheduling, Springer, vol. 24(6), pages 663-680, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:128:y:2024:i:c:s030504832400080x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.