IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v87y2019icp86-104.html
   My bibliography  Save this article

Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors

Author

Listed:
  • Zhang, Chuntian
  • Gao, Yuan
  • Yang, Lixing
  • Kumar, Uday
  • Gao, Ziyou

Abstract

Regular maintenances on high-speed railway facilities are performed in every night in China, and during regular maintenances, high-speed railway is not available for the sunset-departure and sunrise-arrival trains (SDSA-trains). In order to reduce the influence of regular maintenances on SDSA-trains, three operation modes are used in practice, which mainly consist of route selections between high-speed railway and normal-speed railway. In this paper, we use some linearization techniques to formulate a mixed integer linear programming (MILP) model to identify the operation modes and the timetable of SDSA-trains, by integrating the time window selection of regular maintenances on high-speed railways. The objective of the model is to minimize the total travel time of SDSA-trains. In the formulation of the model, we introduce state variables to indicate whether a train is running on high-speed railway or not, which makes it conveniently express the selection of operation modes. Based on the real data of Beijing-Guangzhou high-speed and normal-speed railway corridors in China, numerical experiments are carried out to test the proposed model and optimization method.

Suggested Citation

  • Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Kumar, Uday & Gao, Ziyou, 2019. "Integrated optimization of train scheduling and maintenance planning on high-speed railway corridors," Omega, Elsevier, vol. 87(C), pages 86-104.
  • Handle: RePEc:eee:jomega:v:87:y:2019:i:c:p:86-104
    DOI: 10.1016/j.omega.2018.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317310575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    2. U. Brännlund & P. O. Lindberg & A. Nõu & J.-E. Nilsson, 1998. "Railway Timetabling Using Lagrangian Relaxation," Transportation Science, INFORMS, vol. 32(4), pages 358-369, November.
    3. Bešinović, Nikola & Goverde, Rob M.P. & Quaglietta, Egidio & Roberti, Roberto, 2016. "An integrated micro–macro approach to robust railway timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 14-32.
    4. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    5. G Budai & D Huisman & R Dekker, 2006. "Scheduling preventive railway maintenance activities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1035-1044, September.
    6. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    7. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    8. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    9. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    10. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
    11. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    12. Zhou, Xuesong & Zhong, Ming, 2005. "Bicriteria train scheduling for high-speed passenger railroad planning applications," European Journal of Operational Research, Elsevier, vol. 167(3), pages 752-771, December.
    13. Yang, Lixing & Qi, Jianguo & Li, Shukai & Gao, Yuan, 2016. "Collaborative optimization for train scheduling and train stop planning on high-speed railways," Omega, Elsevier, vol. 64(C), pages 57-76.
    14. Alberto Caprara & Matteo Fischetti & Paolo Toth, 2002. "Modeling and Solving the Train Timetabling Problem," Operations Research, INFORMS, vol. 50(5), pages 851-861, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    2. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    3. Mohammadi, Reza & He, Qing & Karwan, Mark, 2021. "Data-driven robust strategies for joint optimization of rail renewal and maintenance planning," Omega, Elsevier, vol. 103(C).
    4. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    6. Yang, Lin & Gao, Yuan & D’Ariano, Andrea & Xu, Suxiu, 2024. "Integrated optimization of train timetable and train unit circulation for a Y-type urban rail transit system with flexible train composition mode," Omega, Elsevier, vol. 122(C).
    7. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    8. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    9. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    2. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    3. Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.
    4. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    5. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    6. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    7. Ji, Hangyu & Wang, Rui & Zhang, Chuntian & Yin, Jiateng & Ma, Lin & Yang, Lixing, 2024. "Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach," Omega, Elsevier, vol. 124(C).
    8. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    9. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    10. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    11. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    12. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    13. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    14. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    15. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    16. Zhang, Di & Gao, Yuan & Yang, Lixing & Cui, Lixin, 2024. "Timetable synchronization of the last several trains at night in an urban rail transit network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 494-512.
    17. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    18. Xueqiao Yu & Maoxiang Lang & Wenhui Zhang & Shiqi Li & Mingyue Zhang & Xiao Yu, 2019. "An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express," Sustainability, MDPI, vol. 11(7), pages 1-30, April.
    19. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    20. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:87:y:2019:i:c:p:86-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.