IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1336-1358.html
   My bibliography  Save this article

Thinking outside the container: A sparse partial least squares approach to forecasting trade flows

Author

Listed:
  • Stamer, Vincent

Abstract

Global container ship movements may reliably predict trade flows. First, this paper provides the methodology to construct maritime shipping time series from a dataset comprising millions of container vessel positions annually. Second, to forecast monthly goods trade using these time series, this study outlines the use of the least absolute shrinkage and selection operator (LASSO) in combination with a partial least squares process (PLS). An expanding window, out-of-sample exercise demonstrates that constructed forecasts outperform benchmark models for the vast majority of 76 countries and regions. The performance holds true for unilateral and bilateral trade flows, for trade of developed and developing countries, for real and nominal trade, as well as for time periods of economic crisis such as the COVID-19 pandemic. The resulting forecasts of trade flows precede official statistics by several months and may facilitate quantification of supply chain disruptions and trade wars.

Suggested Citation

  • Stamer, Vincent, 2024. "Thinking outside the container: A sparse partial least squares approach to forecasting trade flows," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1336-1358.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1336-1358
    DOI: 10.1016/j.ijforecast.2023.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702300122X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1336-1358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.