Making text count: economic forecasting using newspaper text
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
References listed on IDEAS
- Redl, Chris, 2020.
"Uncertainty matters: Evidence from close elections,"
Journal of International Economics, Elsevier, vol. 124(C).
- Chris Redl, 2019. "Uncertainty Matters: Evidence from Close Elections," NBER Chapters, in: NBER International Seminar on Macroeconomics 2019, National Bureau of Economic Research, Inc.
- Redl, Chris, 2018. "Uncertainty matters: evidence from close elections," Bank of England working papers 722, Bank of England.
- Kozeniauskas, Nicholas & Orlik, Anna & Veldkamp, Laura, 2018. "What are uncertainty shocks?," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 1-15.
- Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021.
"News and narratives in financial systems: Exploiting big data for systemic risk assessment,"
Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Nyman, Rickard & Kapadia, Sujit & Tuckett, David & Gregory, David & Ormerod, Paul & Smith, Robert, 2018. "News and narratives in financial systems: exploiting big data for systemic risk assessment," Bank of England working papers 704, Bank of England.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Prat, Andrea & Kennedy, Patrick, 2017. "Where Do People Get Their News?," CEPR Discussion Papers 12426, C.E.P.R. Discussion Papers.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015.
"Measuring Uncertainty,"
American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2013. "Measuring Uncertainty," NBER Working Papers 19456, National Bureau of Economic Research, Inc.
- Husted, Lucas & Rogers, John & Sun, Bo, 2020.
"Monetary policy uncertainty,"
Journal of Monetary Economics, Elsevier, vol. 115(C), pages 20-36.
- Lucas F. Husted & John H. Rogers & Bo Sun, 2017. "Monetary Policy Uncertainty," International Finance Discussion Papers 1215, Board of Governors of the Federal Reserve System (U.S.).
- Loughran, Tim & McDonald, Bill, 2013. "IPO first-day returns, offer price revisions, volatility, and form S-1 language," Journal of Financial Economics, Elsevier, vol. 109(2), pages 307-326.
- Jon Cohen & Michelle Alexopoulos, 2009.
"Uncertain Times, Uncertain Measures,"
2009 Meeting Papers
1211, Society for Economic Dynamics.
- Michelle Alexopoulos & Jon Cohen, 2009. "Uncertain Times, uncertain measures," Working Papers tecipa-352, University of Toronto, Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Peter, Eckley, 2015. "Measuring economic uncertainty using news-media textual data," MPRA Paper 64874, University Library of Munich, Germany, revised 01 May 2015.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
- Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Leland Bybee & Bryan T. Kelly & Asaf Manela & Dacheng Xiu, 2020. "The Structure of Economic News," NBER Working Papers 26648, National Bureau of Economic Research, Inc.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- George A. Akerlof & Robert J. Shiller, 2010. "Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism," Economics Books, Princeton University Press, edition 1, number 9163.
- Redl, Chris, 2017. "The impact of uncertainty shocks in the United Kingdom," Bank of England working papers 695, Bank of England.
- Alexopoulos, Michelle & Cohen, Jon, 2015. "The power of print: Uncertainty shocks, markets, and the economy," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 8-28.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
- Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
- Rambaccussing, Dooruj & Kwiatkowski, Andrzej, 2020. "Forecasting with news sentiment: Evidence with UK newspapers," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1501-1516.
- Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
- Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
- Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
- Cepni, Oguzhan & Clements, Michael P., 2024.
"How local is the local inflation factor? Evidence from emerging European countries,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
- Cepni, Oguzhan & Clements, Michael P., 2021. "How Local is the Local Inflation Factor? Evidence from Emerging European Countries," Working Papers 8-2021, Copenhagen Business School, Department of Economics.
- Luiz Renato Lima & Lucas Lúcio Godeiro & Mohammed Mohsin, 2021. "Time-Varying Dictionary and the Predictive Power of FED Minutes," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 149-181, January.
- Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Aprigliano, Valentina & Emiliozzi, Simone & Guaitoli, Gabriele & Luciani, Andrea & Marcucci, Juri & Monteforte, Libero, 2023.
"The power of text-based indicators in forecasting Italian economic activity,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 791-808.
- Valentina Aprigliano & Simone Emiliozzi & Gabriele Guaitoli & Andrea Luciani & Juri Marcucci & Libero Monteforte, 2021. "The power of text-based indicators in forecasting the Italian economic activity," Temi di discussione (Economic working papers) 1321, Bank of Italy, Economic Research and International Relations Area.
- Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021.
"News and narratives in financial systems: Exploiting big data for systemic risk assessment,"
Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Nyman, Rickard & Kapadia, Sujit & Tuckett, David & Gregory, David & Ormerod, Paul & Smith, Robert, 2018. "News and narratives in financial systems: exploiting big data for systemic risk assessment," Bank of England working papers 704, Bank of England.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Aromi, J. Daniel, 2020. "Linking words in economic discourse: Implications for macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1517-1530.
- Daniel Borup & Jorge Wolfgang Hansen & Benjamin Dybro Liengaard & Erik Christian Montes Schütte, 2023. "Quantifying investor narratives and their role during COVID‐19," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 512-532, June.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
- Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
More about this item
Keywords
Text; forecasting; machine learning;All these keywords.
JEL classification:
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- J42 - Labor and Demographic Economics - - Particular Labor Markets - - - Monopsony; Segmented Labor Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-06-15 (Big Data)
- NEP-CMP-2020-06-15 (Computational Economics)
- NEP-ECM-2020-06-15 (Econometrics)
- NEP-FOR-2020-06-15 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0865. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.