Sparse partial least squares in time series for macroeconomic forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
References listed on IDEAS
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Eickmeier, Sandra & Ng, Tim, 2011.
"Forecasting national activity using lots of international predictors: An application to New Zealand,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
- Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
- Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
- Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
- Groen, Jan J.J. & Kapetanios, George, 2016.
"Revisiting useful approaches to data-rich macroeconomic forecasting,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
- Jan J.J. Groen & George Kapetanios, 2008. "Revisiting Useful Approaches to Data-Rich Macroeconomic Forecasting," Working Papers 624, Queen Mary University of London, School of Economics and Finance.
- Jan J. J. Groen & George Kapetanios, 2008. "Revisiting useful approaches to data-rich macroeconomic forecasting," Staff Reports 327, Federal Reserve Bank of New York.
- James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012.
"A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 674, European Central Bank.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Post-Print hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011.
"Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
- Caggiano, Giovanni & Kapetanios, George & Labhard, Vincent, 2009. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Working Paper Series 1051, European Central Bank.
- Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Geweke, John F. & Singleton, Kenneth J., 1981. "Latent variable models for time series : A frequency domain approach with an application to the permanent income hypothesis," Journal of Econometrics, Elsevier, vol. 17(3), pages 287-304, December.
- Jean Boivin & Serena Ng, 2005.
"Understanding and Comparing Factor-Based Forecasts,"
International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
- Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
- Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marine Carrasco & Barbara Rossi, 2016.
"In-Sample Inference and Forecasting in Misspecified Factor Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
- Rossi, Barbara & Carrasco, Marine, 2016. "In-sample Inference and Forecasting in Misspecified Factor Models," CEPR Discussion Papers 11388, C.E.P.R. Discussion Papers.
- Marine Carrasco & Barbara Rossi, 2016. "In-sample inference and forecasting in misspecified factor models," Economics Working Papers 1530, Department of Economics and Business, Universitat Pompeu Fabra.
- Cepni, Oguzhan & Clements, Michael P., 2024.
"How local is the local inflation factor? Evidence from emerging European countries,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
- Cepni, Oguzhan & Clements, Michael P., 2021. "How Local is the Local Inflation Factor? Evidence from Emerging European Countries," Working Papers 8-2021, Copenhagen Business School, Department of Economics.
- Tommaso Proietti, 2016.
"On the Selection of Common Factors for Macroeconomic Forecasting,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628,
Emerald Group Publishing Limited.
- Giovannelli, Alessandro & Proietti, Tommaso, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," MPRA Paper 60673, University Library of Munich, Germany.
- Alessandro Giovannelli & Tommaso Proietti, 2014. "On the Selection of Common Factors for Macroeconomic Forecasting," CREATES Research Papers 2014-46, Department of Economics and Business Economics, Aarhus University.
- Alessandro Giovannelli & Tommaso Proietti, 2015. "On the Selection of Common Factors for Macroeconomic Forecasting," CEIS Research Paper 332, Tor Vergata University, CEIS, revised 12 Mar 2015.
- Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
- Constantin ANGHELACHE & Madalina-Gabriela ANGHEL & Tudor SAMSON & Radu STOICA, 2017. "Methods And Techniques For Preparing Forecasts," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(4), pages 26-36, April.
- Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
- Juan, Aranzazu de & Poncela, Maria Pilar, 2023. "Economic activity and C02 emissions in Spain," DES - Working Papers. Statistics and Econometrics. WS 37975, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Stamer, Vincent, 2022. "Thinking Outside the Container: A Sparse Partial Least Squares Approach to Forecasting Trade Flows," VfS Annual Conference 2022 (Basel): Big Data in Economics 264096, Verein für Socialpolitik / German Economic Association.
- Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Cheung, Yin-Wong & Wang, Wenhao, 2022.
"Uncovered interest rate parity redux: Non-uniform effects,"
Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.
- Yin-Wong Cheung & Wenhao Wang, 2020. "Uncovered Interest Rate Parity Redux: Non- Uniform Effects," GRU Working Paper Series GRU_2020_004, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eickmeier, Sandra & Ng, Tim, 2011.
"Forecasting national activity using lots of international predictors: An application to New Zealand,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
- Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
- Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
- Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016.
"A multi-country approach to forecasting output growth using PMIs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
- Alexander Chudik & Valerie Grossman & M. Hashem Pesaran, 2014. "A multi-country approach to forecasting output growth using PMIs," Globalization Institute Working Papers 213, Federal Reserve Bank of Dallas.
- Alexander Chudik & Valerie Grossman & M. Hashem Pesaran, 2014. "A Multi-Country Approach to Forecasting Output Growth Using PMIs," CESifo Working Paper Series 5100, CESifo.
- Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
- Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
- Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
- Cubadda, Gianluca & Guardabascio, Barbara, 2012.
"A medium-N approach to macroeconomic forecasting,"
Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
- Gianluca Cubadda & Barbara Guardabascio, 2010. "A Medium-N Approach to Macroeconomic Forecasting," CEIS Research Paper 176, Tor Vergata University, CEIS, revised 09 Dec 2010.
- Lütkepohl, Helmut, 2014.
"Structural vector autoregressive analysis in a data rich environment: A survey,"
SFB 649 Discussion Papers
2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
- Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
More about this item
Keywords
Forecasting;NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2012-08-23 (Econometrics)
- NEP-ETS-2012-08-23 (Econometric Time Series)
- NEP-FOR-2012-08-23 (Forecasting)
- NEP-MAC-2012-08-23 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws122216. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.