IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2008047.html
   My bibliography  Save this paper

An easy test for two stationary long processes being uncorrelated via AR approximations

Author

Listed:
  • WANG , Shin-Huei

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

  • HSIAO, Cheng

Abstract

This paper proposes an easy test for two stationary autoregressive fractionally integrated moving average (ARFIMA) processes being uncorrelated via AR approximations. We prove that an ARFIMA process can be approximated well by an autoregressive (AR) model and establish the theoretical foundation of Haugh's (1976) statistics to test two ARFIMA processes being uncorrelated. Using AIC or Mallow's Cp criterion as a guide, we demonstrate through Monte Carlo studies that a lower order AR(k) model is sufficient to prewhiten an ARFIMA process and the Haugh test statistics perform very well in finite sample. We illustrate the methodology by investigating the independence between the volatility of two daily nominal dollar exchange rates-Euro and Japanese Yen and find that there exists "strongly simultaneous correlation" between the volatilities of Euro and Yen within 25 days.

Suggested Citation

  • WANG , Shin-Huei & HSIAO, Cheng, 2008. "An easy test for two stationary long processes being uncorrelated via AR approximations," LIDAM Discussion Papers CORE 2008047, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2008047
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2008.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).

    More about this item

    Keywords

    forecasting; long memory process; structural break.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2008047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.